請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67603完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維(Shi-Wei Chu) | |
| dc.contributor.author | Pin-Yi Li | en |
| dc.contributor.author | 李品儀 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:39:46Z | - |
| dc.date.available | 2019-08-01 | |
| dc.date.copyright | 2017-08-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-28 | |
| dc.identifier.citation | [1] W. Coene, G. Janssen, M. O. de Beeck, and D. Van Dyck, “Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy,” Phys. Rev. Lett., vol. 69, no. 26, p. 3743, 1992.
[2] A. Niemietz and L. Reimer, “Digital image processing of multiple detector signals in scanning electron microscopy,” Ultramicroscopy, vol. 16, no. 2, pp. 161–173, 1985. [3] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett., vol. 56, no. 9, p. 930, 1986. [4] A. Ghatak, Optics. Boston: McGraw-Hill Higher Education, 2010. [5] “http://zeisscampus.magnet.fsu.edu/articles/basics/resolution.html.” . [6] E. Betzig, J. Trautman, and others, “Near-field optics- Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science (80-. )., vol. 257, no. 5067, pp. 189–195, 1992. [7] S. W. Hell, “Far-field optical nanoscopy,” Science (80-. )., vol. 316, no. 5828, pp. 1153–1158, 2007. [8] M. J. Rust, M. Bates, and X. Zhuang, “Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution,” Nat. Methods, vol. 3, no. 10, p. 793, 2006. [9] B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science (80-. )., vol. 319, no. 5864, pp. 810–813, 2008. [10] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science (80-. )., vol. 313, no. 5793, pp. 1642–1645, 2006. [11] S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J., vol. 91, no. 11, pp. 4258–4272, 2006. [12] D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun., vol. 3, p. 1205, 2012. [13] F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett., vol. 9, no. 3, pp. 1249–1254, 2009. [14] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, no. 18, p. 3966, 2000. [15] N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science (80-. )., vol. 308, no. 5721, pp. 534–537, 2005. [16] X. Hao, C. Kuang, Z. Gu, Y. Wang, S. Li, Y. Ku, Y. Li, J. Ge, and X. Liu, “From microscopy to nanoscopy via visible light,” Light Sci Appl, vol. 2, p. e108–, 2013. [17] Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun., vol. 2, p. 218, 2011. [18] A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett., vol. 101, no. 14, p. -, 2012. [19] Y. Tsao, “Investigating Super-Resolution Mechanisms of Dielectric Microlenses,” National Taiwan University, 2015. [20] “Matweb.” 2015. [21] H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small, vol. 10, no. 9, pp. 1712–1718, 2014. [22] AVlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology, vol. 23, no. 28, p. 285708, 2012. [23] L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl., vol. 2, no. 9, p. e104, 2013. [24] A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett., vol. 40, no. 1, pp. 5–8, 2015. [25] S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt., vol. 15, no. 12, 2013. [26] A. Darafsheh, “Optical Super-Resolution and Periodical Focusing Effects by Dielectric Microspheres,” University of North Carolina at Charlotte, 2013. [27] Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” JOSA B, vol. 29, no. 4, pp. 758–762, 2012. [28] M. Gomilšek, “Whispering gallery modes.” 2011. [29] S. De Nicola, P. Mormile, and G. Pierattini, “The Temperature Dependence of the Refractive Index of an Aqueous Suspension of Polystyrene Microspheres.,” Appl. phys. B, vol. 53, pp. 350–352, 1991. [30] J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non. Cryst. Solids, vol. 135, no. 1, pp. 86–89, 1991. [31] C. . Regan, D. Dominguez, L. G. de Peralta, and A. A. Bernussi, “Far-Field optical superlenses without metal,” J. Appl. Phys., vol. 113, p. 183105, 2013. [32] P. A. Stokseth, “Properties of a Defocused Optical System,” JOSA, vol. 59, no. 10, pp. 1314–1321, 1969. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67603 | - |
| dc.description.abstract | 超解析顯微技術(superresolution)常用來打破繞射極限,但缺點是掃描影像速度過慢、螢光分子壽命太短,以及繁複的樣品製備流程。近期有研究發現介電微米小球可以將波長尺度之下的資訊傳遞至遠場,也就是白光下就會有超解析現象,而我們也實驗證實用微米小球可以達到比λ/6.4更好的空間解析度。不過,介電微球產生超解析現象的機制仍有爭議,而其中兩種可能的解釋為回音壁模態(whispering gallery mode)和衰減波(evanescent wave)。
我們的實驗結果排除了這兩種機制造成超解析現象的可能性,並提出耦合同調超解析是提升解析度的主因。我們的實驗證據進一步指出,結合耦合同調超解析和微米小球的情況下,不論在金屬或非金屬的樣品上都可以顯著提升解析度。 | zh_TW |
| dc.description.abstract | Superresolution techniques are widely-used approaches to overcome diffraction limit. However, those techniques encounter difficulties, such as sluggish scanning speeds, limited lifetime of fluorescent dyes, or sophisticated fabrication processes. Recently, it has been shown that dielectric microspheres can bring the sub-wavelength information to far-field, achieving superresolution by a white-light source. Indeed, we have also demonstrated that it can reach spatial resolution better than λ/6.4 using the microspheres.
However, the underlying mechanism of microsphere superresolution is still under debate. Two possible mechanisms are whispering gallery modes and evanescent waves. In this thesis, we experimentally exclude the two mechanisms be likely explanations. Instead, we propose and demonstrate coupling-induced coherent superresolution to be the mechanism for enhancement of resolution. We further show evidence that by combining the coupling-induced coherent superresolution and microsphere can drastically increase the resolution when imaging metallic and nonmetallic samples. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:39:46Z (GMT). No. of bitstreams: 1 ntu-106-R05245003-1.pdf: 3031342 bytes, checksum: 78e4492b777b77895a5601203c866276 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Diffraction limit and superresolution microscopy techniques 1 1.2 Superresolution Methods 3 1.3 Superresolution Microlenses 4 1.4 About Our Works 5 Chapter 2 Image properties of dielectric microlenses 6 2.1 Fabrication of Partially Immersed Microlenses 6 2.2 Point-Spread Function Analysis 9 2.3 Effects of changing immersion medium and materials of microsphere 11 2.4 Effects on the sizes of microsphere 14 2.4.1 Magnification 14 2.4.2 Resolution 16 2.5 Fluorescent imaging 17 Chapter 3 Mechanism of dielectric microsphere imaging 20 3.1 Whispering Gallery Modes 20 3.1.1 By fine-tuning the wavelength 22 3.1.2 By fine-tuning the Temperature 23 3.2 Evanescent imaging 26 3.3 Coupling-induced coherent superresolution 30 3.3.1 Mechanism 30 3.3.2 Feature 32 3.3.3 Polarization dependent resolution 33 3.3.4 Polarization dependent resolution for different grating periodicity 34 3.4 The role of microsphere 38 Chapter 4 Summary 41 REFERENCE 42 | |
| dc.language.iso | en | |
| dc.subject | 微米小球 | zh_TW |
| dc.subject | 漸逝波 | zh_TW |
| dc.subject | 繞射極限 | zh_TW |
| dc.subject | evanescent wave | en |
| dc.subject | microsphere | en |
| dc.subject | superresolution | en |
| dc.subject | superlens | en |
| dc.subject | diffraction limit | en |
| dc.title | 探索微米透鏡超解析顯微術之機制 | zh_TW |
| dc.title | Investigating the Mechanism of Superresolution of Dielectric Microspheres | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張之威(Chih-Wei Chang) | |
| dc.contributor.oralexamcommittee | 陳健群(Chien-Chun Chen) | |
| dc.subject.keyword | 漸逝波,微米小球,繞射極限, | zh_TW |
| dc.subject.keyword | evanescent wave, microsphere,superresolution,superlens,diffraction limit, | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU201702093 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
