請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67595完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李坤彥 | |
| dc.contributor.author | Chia-Hui Lin | en |
| dc.contributor.author | 林家翬 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:39:23Z | - |
| dc.date.available | 2022-08-02 | |
| dc.date.copyright | 2017-08-02 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-28 | |
| dc.identifier.citation | [1] 台大教授黃秉鈞提倡非核三部曲。經濟日報/C8/光電半導體,2017/2/27
[2] Liang-Rui Chen,”A Design of an Optimal Battery Pulse Charge System by Frequency-Varied Technique”, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 1, FEBRUARY 2007 [3] B J Huang etc. “Annual Report - Solar Energy Research Center”, KAUST GRP Award, KUK-C1-014-12,2012. [4] B.J.Huang, F.S.Sun and R.W.Ho: “Near-Maximum-Power-Point-Operation (nMPPO) Design of Photovoltaic Power Generation System”, Solar Energy 80(8),1003-1020(2006). [5] https://www.bestlatest.net/mean-well-600w-40a-15v-power-supply-se-600-15-ac-110v-220v-to-dc-15v-smps-9a1e58fd88ac6cb3.html [6] 蔡宗翰: “獨立型太陽光發電系統可靠度提升研究” ,國立台灣大學機械工程研究所,2015 [7] 許伯堅:“隔離混合型太陽光發電系統最佳設計”,國立臺灣大學機械工程研究所,2014 [8] Sayigh, A. “Comprehensive Renewable Energy”. The Solar Resource. Vol. 3. 2012, H.D. Kambezidis: Elsevier Ltd. [9] Palyvos, E.S.a.J.A.,”Operating temperature of photovoltaic modules: A survey of pertinent correlations”. Renewable Energy, 2009(34): p. 23-29. [10] Manuel Vázquez, a.I.R.S., “Photovoltaic module reliability model based on field degradation studies”, Progress in Photovoltaics: Research and Applications, 2008. 16(5): p. 419-433. [11] D. C. Jordan, a.S.R.K., “Photovoltaic Degradation Rates—an Analytical Review”, Progress in Photovoltaics: Research and Applications, 2013. 21(1): p. 12-29. [12] B. Marion, J.A., K. Boyle, H. Hayden, B. Hammond, T. Fletcher, B. Canada, D. Narang, D. Shugar, H. Wenger, A. Kimber, L. Mitchell, G. Rich, and T. Townsend, “Performance Parameters for Grid-Connected PV Systems”, in 31st IEEE Photovoltaics Specialists Conference and Exhibition. 2005: Lake Buena Vista, Florida. [13] How to Change Prameters. Available from: http://www.nrel.gov/rredc/pvwatts/changing_parameters.html. [14] 王家瑋: “蓄電池充電控制對自用型太陽光電系統性能影響” ,國立台灣大學機械工程研究所,2016 [15] 鍾琦嶢: “單軸追日太陽光發電系統最佳發電智能控制研究” ,國立台灣大學工程科學與海洋工程研究所,2016 [16] B. J. Huang, W. L. Ding, W. C. Huang: “Long-term field test of solar PV power generation using one-axis 3-position sun tracker”. Solar Energy 85, pp.1935-1944 (2011). [17] B. J. Huang, Y. C. Huang, G. Y. Chen, P. C. Hsu, K. Li. “Improving Solar PV System Efficiency Using One-Axis3-Position Sun Tracking”. Energy Procedia33, 280 –287(2013). [18] 張佑任:“混合型太陽光發電系統設計分析”,國立臺灣大學機械工程研究所,2014 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67595 | - |
| dc.description.abstract | 本研究旨在提升自用型太陽光電系統(hybrid PV system, HyPV)之性能,主要分為兩個實驗,第一個部分是利用脈衝充電的方式對矽鉛電池進行長期性能檢測,探討對系統匹配之電池壽命週期的影響。第二個是為了減少發電損失,採取太陽光電板直充蓄電池技術,利用Matlab 模擬軟體建構系統發電之模型並驗證及分析。
在矽鉛電池方面,先利用脈衝充電進行長期的性能檢測,探討其對系統匹配之電池壽命週期的影響。在兩種常溫(25oC)及高溫(50oC)環境下進行長期檢測,並測試四種不同的充電方式,其中包含定電流以及三種不同的脈衝頻率:500 Hz、1000 Hz、2000 Hz,藉此比較老化之特性。結果指出,常溫下脈衝頻率500 Hz 會使電池在標準充放電曲線量測時充電曲線較平滑,放慢老化的速度;高溫環境下,脈衝頻率2000 Hz 的矽鉛電池具有最長的壽命週期。 HyPV 本身採用近最大功率點操作設計(Near-Maximum-Power-Point-Operation Design,nMPPO),將太陽電池與蓄電池特性進行匹配設計。在模擬測試方面,為了減少發電損失,採取不限制電流的蓄電方式來執行太陽光電板直充蓄電池技術。透過模擬結果可以得到最佳系統匹配,經濟分析後會取得最佳發電效益。此外,在加入1AMPG 提升太陽光電板發電量後,更能提升直充技術的實現價值。 | zh_TW |
| dc.description.abstract | This study proposes to improve performance of hybrid PV system (HyPV). First, we fed the charge current to the Si-lead battery in pulses to determine the long-term performance and discussed the effects of a pulse charging technique on charge–discharge behavior and cycling characteristics of Si-lead battery. On the other hand, to implement technology of PV panels directly charge battery without limiting current, we constructed power generation model by Matlab to verify and analyse.
In the Si-lead battery part, there were four different charging methods including the constant current (CC), pulse frequency of 500 Hz, 1000 Hz and 2000 Hz used under room temperature and high temperature. The results show that the charging curve of pulse charging methods was slightly smooth and the aging speed of battery was slow under the room temperature. Besides, it could extend cycle life of the battery by pulse charging technique under the high temperature. In the simulation part, to reduce electricity energy loss, we used unlimited current to implement the technology of PV panels directly charge battery. We found out the optimal maching on hybrid solar power generation systems by anaylise of economy. Furthermore, adding one-axis maximum power generation technique (1A-MPG) on the system the value of this directly charge technology could be raise. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:39:23Z (GMT). No. of bitstreams: 1 ntu-106-R04525082-1.pdf: 10490859 bytes, checksum: 27b388f3bc320f25353f38f2caf31d20 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝II 摘 要III Abstract V 目錄VII 圖目錄X 表目錄XV 符號說明XVII 緒論...................................................................................................................1 1.1 研究動機...................................................................................................1 1.2 研究目的...................................................................................................5 1.3 研究內容...................................................................................................6 脈衝充電方法與控制器電路設計...................................................................7 2.1 矽鉛電池壽命延長實驗設備...................................................................7 2.1.1 脈衝充電長期連續深循環實驗設備............................................7 2.1.2 標準充放電曲線量測實驗設備..................................................12 2.2 脈衝控制器設計.....................................................................................13 2.2.1 控制器硬體設計..........................................................................13 2.2.2 控制器軟體設計..........................................................................19 2.3 脈衝充電實驗流程.................................................................................23 2.4 高溫實驗與溫控箱設計.........................................................................25 脈衝頻率與環境對矽鉛電池之影響.............................................................28 3.1 定電流充放電老化特性分析.................................................................28 3.2 脈衝頻率對矽鉛電池之老化特性分析.................................................33 3.2.1 老化特性個別結果分析..............................................................33 3.2.2 老化特性比較分析......................................................................44 3.3 脈衝頻率與環境溫度對矽鉛電池之老化特性分析.............................49 3.3.1 高溫環境老化特性個別結果分析..............................................49 3.3.2 高溫環境老化特性比較分析......................................................59 HyPV 系統分析模型......................................................................................67 4.1 HyPV 系統架構......................................................................................67 4.2 太陽輻射預測模型.................................................................................68 4.2.1 太陽相對位置..............................................................................68 4.3 太陽能板發電量模型.............................................................................70 4.3.1 太陽光電板發電特性..................................................................70 4.3.2 溫度影響發電量..........................................................................70 4.3.3 老化影響發電量..........................................................................74 4.3.4 太陽光電板最大功率發電量模型..............................................74 4.4 逆變器模型.............................................................................................76 4.5 負載模型.................................................................................................76 4.6 HyPV 供電切換控制..............................................................................78 4.7 HyPV 能量平衡模型..............................................................................80 4.8 經濟效益分析模型.................................................................................82 4.8.1 電價模型......................................................................................82 4.8.2 經濟效益分析..............................................................................85 HyPV 系統性能模擬軟體..............................................................................88 5.1 系統模擬程式介面與匯入資料.............................................................88 5.2 模擬輸出結果(Output) ...........................................................................91 5.3 模擬流程.................................................................................................92 5.4 操作與示範.............................................................................................94 5.5 模擬軟體驗證.........................................................................................97 5.5.1 驗證系統規格..............................................................................97 5.5.2 系統模擬條件設定......................................................................97 5.5.3 模擬結果與實驗數據分析..........................................................99 矽鉛電池與HyPV 系統匹配設計研究.......................................................104 6.1 相對參數定義.......................................................................................104 6.2 長程性能模擬.......................................................................................106 6.2.1 模擬條件設定............................................................................106 6.2.2 台北長程性能模擬結果............................................................107 6.2.3 台南長程性能模擬結果............................................................115 6.3 相對參數分析.......................................................................................123 6.3.1 台北長期性能模擬結果分析....................................................123 6.3.2 台南長期性能模擬結果分析....................................................127 6.4 長程性能模擬優化與分析...................................................................131 6.4.1 台北長程性能優化模擬結果....................................................131 6.4.2 台南長程性能優化模擬結果....................................................136 結論與未來展望...........................................................................................141 7.1 結論.......................................................................................................141 7.2 未來展望...............................................................................................142 參考文獻143 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自用型太陽光發電系統 | zh_TW |
| dc.subject | 脈衝充電 | zh_TW |
| dc.subject | 矽鉛電池 | zh_TW |
| dc.subject | Si-Pb battery | en |
| dc.subject | pulse charging | en |
| dc.subject | HyPV | en |
| dc.title | 矽鉛電池充電技術改良與自用型太陽光發電系統設計 | zh_TW |
| dc.title | Improvement of Charging Technology on Si-Pb Battery and Design Analysis of Hybrid PV System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃秉鈞 | |
| dc.contributor.oralexamcommittee | 陳一飛,李佳翰 | |
| dc.subject.keyword | 矽鉛電池,脈衝充電,自用型太陽光發電系統, | zh_TW |
| dc.subject.keyword | Si-Pb battery,pulse charging,HyPV, | en |
| dc.relation.page | 144 | |
| dc.identifier.doi | 10.6342/NTU201702205 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 10.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
