Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67589
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮麗蓉(Li-Jung Juan)
dc.contributor.authorShih-Huan Pengen
dc.contributor.author彭士桓zh_TW
dc.date.accessioned2021-06-17T01:39:05Z-
dc.date.available2017-09-12
dc.date.copyright2017-09-12
dc.date.issued2017
dc.date.submitted2017-07-31
dc.identifier.citation1. Dorfel, M. J., and Lyon, G. J. (2015) Gene 567, 103-131
2. Starheim, K. K., Gevaert, K., and Arnesen, T. (2012) Trends in biochemical sciences 37, 152-161
3. Polevoda, B., and Sherman, F. (2000) The Journal of biological chemistry 275, 36479-36482
4. Driessen, H. P., de Jong, W. W., Tesser, G. I., and Bloemendal, H. (1985) CRC critical reviews in biochemistry 18, 281-325
5. Kendall, R. L., Yamada, R., and Bradshaw, R. A. (1990) Methods in enzymology 185, 398-407
6. Kalvik, T. V., and Arnesen, T. (2013) Oncogene 32, 269-276
7. Hershko, A., Heller, H., Eytan, E., Kaklij, G., and Rose, I. A. (1984) Proceedings of the National Academy of Sciences of the United States of America 81, 7021-7025
8. Lee, K. E., Heo, J. E., Kim, J. M., and Hwang, C. S. (2016) Molecules and cells 39, 169-178
9. Forte, G. M., Pool, M. R., and Stirling, C. J. (2011) PLoS biology 9, e1001073
10. Scott, D. C., Monda, J. K., Bennett, E. J., Harper, J. W., and Schulman, B. A. (2011) Science 334, 674-678
11. Polevoda, B., Cardillo, T. S., Doyle, T. C., Bedi, G. S., and Sherman, F. (2003) The Journal of biological chemistry 278, 30686-30697
12. Caesar, R., and Blomberg, A. (2004) The Journal of biological chemistry 279, 38532-38543
13. Coulton, A. T., East, D. A., Galinska-Rakoczy, A., Lehman, W., and Mulvihill, D. P. (2010) Journal of cell science 123, 3235-3243
14. Setty, S. R., Strochlic, T. I., Tong, A. H., Boone, C., and Burd, C. G. (2004) Nature cell biology 6, 414-419
15. Behnia, R., Panic, B., Whyte, J. R., and Munro, S. (2004) Nature cell biology 6, 405-413
16. Murthi, A., and Hopper, A. K. (2005) Genetics 170, 1553-1560
17. Arnesen, T., Van Damme, P., Polevoda, B., Helsens, K., Evjenth, R., Colaert, N., Varhaug, J. E., Vandekerckhove, J., Lillehaug, J. R., Sherman, F., and Gevaert, K. (2009) Proceedings of the National Academy of Sciences of the United States of America 106, 8157-8162
18. Polevoda, B., and Sherman, F. (2003) Biochemical and biophysical research communications 308, 1-11
19. Starheim, K. K., Gromyko, D., Velde, R., Varhaug, J. E., and Arnesen, T. (2009) BMC proceedings 3 Suppl 6, S3
20. Van Damme, P., Evjenth, R., Foyn, H., Demeyer, K., De Bock, P. J., Lillehaug, J. R., Vandekerckhove, J., Arnesen, T., and Gevaert, K. (2011) Molecular & cellular proteomics : MCP 10, M110 004580
21. Polevoda, B., and Sherman, F. (2003) Journal of molecular biology 325, 595-622
22. Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A., and Sherman, F. (1999) The EMBO journal 18, 6155-6168
23. Van Damme, P., Lasa, M., Polevoda, B., Gazquez, C., Elosegui-Artola, A., Kim, D. S., De Juan-Pardo, E., Demeyer, K., Hole, K., Larrea, E., Timmerman, E., Prieto, J., Arnesen, T., Sherman, F., Gevaert, K., and Aldabe, R. (2012) Proceedings of the National Academy of Sciences of the United States of America 109, 12449-12454
24. Polevoda, B., Hoskins, J., and Sherman, F. (2009) Molecular and cellular biology 29, 2913-2924
25. Magin, R. S., Liszczak, G. P., and Marmorstein, R. (2015) Structure 23, 332-341
26. Aksnes, H., Van Damme, P., Goris, M., Starheim, K. K., Marie, M., Stove, S. I., Hoel, C., Kalvik, T. V., Hole, K., Glomnes, N., Furnes, C., Ljostveit, S., Ziegler, M., Niere, M., Gevaert, K., and Arnesen, T. (2015) Cell reports 10, 1362-1374
27. Tribioli, C., Mancini, M., Plassart, E., Bione, S., Rivella, S., Sala, C., Torri, G., and Toniolo, D. (1994) Human molecular genetics 3, 1061-1067
28. Chun, K. H., Cho, S. J., Choi, J. S., Kim, S. H., Kim, K. W., and Lee, S. K. (2007) Biochemical and biophysical research communications 353, 18-25
29. Sanchez-Puig, N., and Fersht, A. R. (2006) Protein science : a publication of the Protein Society 15, 1968-1976
30. Vetting, M. W., LP, S. d. C., Yu, M., Hegde, S. S., Magnet, S., Roderick, S. L., and Blanchard, J. S. (2005) Archives of biochemistry and biophysics 433, 212-226
31. Liszczak, G., Goldberg, J. M., Foyn, H., Petersson, E. J., Arnesen, T., and Marmorstein, R. (2013) Nature structural & molecular biology 20, 1098-1105
32. Liszczak, G., and Marmorstein, R. (2013) Proceedings of the National Academy of Sciences of the United States of America 110, 14652-14657
33. Oke, M., Carter, L. G., Johnson, K. A., Liu, H., McMahon, S. A., Yan, X., Kerou, M., Weikart, N. D., Kadi, N., Sheikh, M. A., Schmelz, S., Dorward, M., Zawadzki, M., Cozens, C., Falconer, H., Powers, H., Overton, I. M., van Niekerk, C. A., Peng, X., Patel, P., Garrett, R. A., Prangishvili, D., Botting, C. H., Coote, P. J., Dryden, D. T., Barton, G. J., Schwarz-Linek, U., Challis, G. L., Taylor, G. L., White, M. F., and Naismith, J. H. (2010) Journal of structural and functional genomics 11, 167-180
34. Arnesen, T., Anderson, D., Baldersheim, C., Lanotte, M., Varhaug, J. E., and Lillehaug, J. R. (2005) The Biochemical journal 386, 433-443
35. Ohkawa, N., Sugisaki, S., Tokunaga, E., Fujitani, K., Hayasaka, T., Setou, M., and Inokuchi, K. (2008) Genes to cells : devoted to molecular & cellular mechanisms 13, 1171-1183
36. Kuo, H. P., Lee, D. F., Chen, C. T., Liu, M., Chou, C. K., Lee, H. J., Du, Y., Xie, X., Wei, Y., Xia, W., Weihua, Z., Yang, J. Y., Yen, C. J., Huang, T. H., Tan, M., Xing, G., Zhao, Y., Lin, C. H., Tsai, S. F., Fidler, I. J., and Hung, M. C. (2010) Science signaling 3, ra9
37. Myklebust, L. M., Van Damme, P., Stove, S. I., Dorfel, M. J., Abboud, A., Kalvik, T. V., Grauffel, C., Jonckheere, V., Wu, Y., Swensen, J., Kaasa, H., Liszczak, G., Marmorstein, R., Reuter, N., Lyon, G. J., Gevaert, K., and Arnesen, T. (2015) Human molecular genetics 24, 1956-1976
38. Lange, P. F., Huesgen, P. F., Nguyen, K., and Overall, C. M. (2014) Journal of proteome research 13, 2028-2044
39. Jeong, J. W., Bae, M. K., Ahn, M. Y., Kim, S. H., Sohn, T. K., Bae, M. H., Yoo, M. A., Song, E. J., Lee, K. J., and Kim, K. W. (2002) Cell 111, 709-720
40. Lim, J. H., Park, J. W., and Chun, Y. S. (2006) Cancer research 66, 10677-10682
41. Shin, D. H., Chun, Y. S., Lee, K. H., Shin, H. W., and Park, J. W. (2009) PloS one 4, e7451
42. Seo, J. H., Cha, J. H., Park, J. H., Jeong, C. H., Park, Z. Y., Lee, H. S., Oh, S. H., Kang, J. H., Suh, S. W., Kim, K. H., Ha, J. Y., Han, S. H., Kim, S. H., Lee, J. W., Park, J. A., Jeong, J. W., Lee, K. J., Oh, G. T., Lee, M. N., Kwon, S. W., Lee, S. K., Chun, K. H., Lee, S. J., and Kim, K. W. (2010) Cancer research 70, 4422-4432
43. Wang, Z., Guo, J., Li, Y., Bavarva, J. H., Qian, C., Brahimi-Horn, M. C., Tan, D., and Liu, W. (2012) Proceedings of the National Academy of Sciences of the United States of America 109, 3053-3058
44. DePaolo, J. S., Wang, Z., Guo, J., Zhang, G., Qian, C., Zhang, H., Zabaleta, J., and Liu, W. (2016) Oncotarget
45. Shin, S. H., Yoon, H., Chun, Y. S., Shin, H. W., Lee, M. N., Oh, G. T., and Park, J. W. (2014) Cell death & disease 5, e1490
46. Yoon, H., Kim, H. L., Chun, Y. S., Shin, D. H., Lee, K. H., Shin, C. S., Lee, D. Y., Kim, H. H., Lee, Z. H., Ryoo, H. M., Lee, M. N., Oh, G. T., and Park, J. W. (2014) Nature communications 5, 5176
47. Lozada, E. M., Andrysik, Z., Yin, M., Redilla, N., Rice, K., and Stambrook, P. J. (2016) Oncotarget
48. Seo, J. H., Park, J. H., Lee, E. J., Vo, T. T., Choi, H., Kim, J. Y., Jang, J. K., Wee, H. J., Lee, H. S., Jang, S. H., Park, Z. Y., Jeong, J., Lee, K. J., Seok, S. H., Park, J. Y., Lee, B. J., Lee, M. N., Oh, G. T., and Kim, K. W. (2016) Nature communications 7, 12882
49. Hu, H., Zhu, W., Qin, J., Chen, M., Gong, L., Li, L., Liu, X., Tao, Y., Yin, H., Zhou, H., Zhou, L., Ye, D., Ye, Q., and Gao, D. (2017) Hepatology 65, 515-528
50. Magin, R. S., March, Z. M., and Marmorstein, R. (2016) The Journal of biological chemistry
51. Lee, C. F., Ou, D. S., Lee, S. B., Chang, L. H., Lin, R. K., Li, Y. S., Upadhyay, A. K., Cheng, X., Wang, Y. C., Hsu, H. S., Hsiao, M., Wu, C. W., and Juan, L. J. (2010) The Journal of clinical investigation 120, 2920-2930
52. Pruitt, K. D., Tatusova, T., and Maglott, D. R. (2007) Nucleic acids research 35, D61-65
53. Kim, S. H., Park, J. A., Kim, J. H., Lee, J. W., Seo, J. H., Jung, B. K., Chun, K. H., Jeong, J. W., Bae, M. K., and Kim, K. W. (2006) Biochemical and biophysical research communications 340, 422-427
54. Seo, J. H., Park, J. H., Lee, E. J., Vo, T. T., Choi, H., Jang, J. K., Wee, H. J., Ahn, B. J., Cha, J. H., Shin, M. W., and Kim, K. W. (2015) International journal of oncology 46, 99-106
55. Ren, T., Jiang, B., Jin, G., Li, J., Dong, B., Zhang, J., Meng, L., Wu, J., and Shou, C. (2008) Cancer letters 264, 83-92
56. Yu, M., Gong, J., Ma, M., Yang, H., Lai, J., Wu, H., Li, L., and Tan, D. (2009) Oncology reports 21, 909-915
57. Zeng, Y., Liu, C., Dong, B., Li, Y., Jiang, B., Xu, Y., Meng, L., Wu, J., Qu, L., and Shou, C. (2013) Med Oncol 30, 562
58. Xu, H., Jiang, B., Meng, L., Ren, T., Zeng, Y., Wu, J., Qu, L., and Shou, C. (2012) Carcinogenesis 33, 1193-1202
59. Yang, H., Li, Q., Niu, J., Li, B., Jiang, D., Wan, Z., Yang, Q., Jiang, F., Wei, P., and Bai, S. (2015) Oncotarget
60. Hua, K. T., Tan, C. T., Johansson, G., Lee, J. M., Yang, P. W., Lu, H. Y., Chen, C. K., Su, J. L., Chen, P. B., Wu, Y. L., Chi, C. C., Kao, H. J., Shih, H. J., Chen, M. W., Chien, M. H., Chen, P. S., Lee, W. J., Cheng, T. Y., Rosenberger, G., Chai, C. Y., Yang, C. J., Huang, M. S., Lai, T. C., Chou, T. Y., Hsiao, M., and Kuo, M. L. (2011) Cancer cell 19, 218-231
61. Zeng, Y., Min, L., Han, Y., Meng, L., Liu, C., Xie, Y., Dong, B., Wang, L., Jiang, B., Xu, H., Zhuang, Q., Zhao, C., Qu, L., and Shou, C. (2014) Carcinogenesis 35, 2244-2253
62. Park, E. C., and Szostak, J. W. (1992) The EMBO journal 11, 2087-2093
63. Whiteway, M., and Szostak, J. W. (1985) Cell 43, 483-492
64. Chen, D., Zhang, J., Minnerly, J., Kaul, T., Riddle, D. L., and Jia, K. (2014) PLoS genetics 10, e1004699
65. Wang, Y., Mijares, M., Gall, M. D., Turan, T., Javier, A., Bornemann, D. J., Manage, K., and Warrior, R. (2010) Developmental dynamics : an official publication of the American Association of Anatomists 239, 2813-2827
66. Ree, R., Myklebust, L. M., Thiel, P., Foyn, H., Fladmark, K. E., and Arnesen, T. (2015) Bioscience reports 35
67. Rope, A. F., Wang, K., Evjenth, R., Xing, J., Johnston, J. J., Swensen, J. J., Johnson, W. E., Moore, B., Huff, C. D., Bird, L. M., Carey, J. C., Opitz, J. M., Stevens, C. A., Jiang, T., Schank, C., Fain, H. D., Robison, R., Dalley, B., Chin, S., South, S. T., Pysher, T. J., Jorde, L. B., Hakonarson, H., Lillehaug, J. R., Biesecker, L. G., Yandell, M., Arnesen, T., and Lyon, G. J. (2011) American journal of human genetics 89, 28-43
68. Van Damme, P., Stove, S. I., Glomnes, N., Gevaert, K., and Arnesen, T. (2014) Molecular & cellular proteomics : MCP 13, 2031-2041
69. Esmailpour, T., Riazifar, H., Liu, L., Donkervoort, S., Huang, V. H., Madaan, S., Shoucri, B. M., Busch, A., Wu, J., Towbin, A., Chadwick, R. B., Sequeira, A., Vawter, M. P., Sun, G., Johnston, J. J., Biesecker, L. G., Kawaguchi, R., Sun, H., Kimonis, V., and Huang, T. (2014) Journal of medical genetics 51, 185-196
70. Popp, B., Stove, S. I., Endele, S., Myklebust, L. M., Hoyer, J., Sticht, H., Azzarello-Burri, S., Rauch, A., Arnesen, T., and Reis, A. (2015) European journal of human genetics : EJHG 23, 602-609
71. Rauch, A., Wieczorek, D., Graf, E., Wieland, T., Endele, S., Schwarzmayr, T., Albrecht, B., Bartholdi, D., Beygo, J., Di Donato, N., Dufke, A., Cremer, K., Hempel, M., Horn, D., Hoyer, J., Joset, P., Ropke, A., Moog, U., Riess, A., Thiel, C. T., Tzschach, A., Wiesener, A., Wohlleber, E., Zweier, C., Ekici, A. B., Zink, A. M., Rump, A., Meisinger, C., Grallert, H., Sticht, H., Schenck, A., Engels, H., Rappold, G., Schrock, E., Wieacker, P., Riess, O., Meitinger, T., Reis, A., and Strom, T. M. (2012) Lancet 380, 1674-1682
72. Casey, J. P., Stove, S. I., McGorrian, C., Galvin, J., Blenski, M., Dunne, A., Ennis, S., Brett, F., King, M. D., Arnesen, T., and Lynch, S. A. (2015) Scientific reports 5, 16022
73. Saunier, C., Stove, S. I., Popp, B., Gerard, B., Blenski, M., AhMew, N., de Bie, C., Goldenberg, P., Isidor, B., Keren, B., Leheup, B., Lampert, L., Mignot, C., Tezcan, K., Mancini, G. M., Nava, C., Wasserstein, M., Bruel, A. L., Thevenon, J., Masurel, A., Duffourd, Y., Kuentz, P., Huet, F., Riviere, J. B., van Slegtenhorst, M., Faivre, L., Piton, A., Reis, A., Arnesen, T., Thauvin-Robinet, C., and Zweier, C. (2016) Human mutation
74. Dawlaty, M. M., Breiling, A., Le, T., Raddatz, G., Barrasa, M. I., Cheng, A. W., Gao, Q., Powell, B. E., Li, Z., Xu, M., Faull, K. F., Lyko, F., and Jaenisch, R. (2013) Developmental cell 24, 310-323
75. Howell, C. Y., Bestor, T. H., Ding, F., Latham, K. E., Mertineit, C., Trasler, J. M., and Chaillet, J. R. (2001) Cell 104, 829-838
76. Yamaguchi, S., Shen, L., Liu, Y., Sendler, D., and Zhang, Y. (2013) Nature 504, 460-464
77. Park, J. H., Seo, J. H., Wee, H. J., Vo, T. T., Lee, E. J., Choi, H., Cha, J. H., Ahn, B. J., Shin, M. W., Bae, S. J., and Kim, K. W. (2014) PloS one 9, e105185
78. Lim, J. H., Chun, Y. S., and Park, J. W. (2008) Cancer research 68, 5177-5184
79. Hashimoto, H., Liu, Y., Upadhyay, A. K., Chang, Y., Howerton, S. B., Vertino, P. M., Zhang, X., and Cheng, X. (2012) Nucleic acids research 40, 4841-4849
80. Pelletier, N., Gregoire, S., and Yang, X. J. (2008) Current protocols in protein science / editorial board, John E. Coligan ... [et al.] Chapter 14, Unit 14 11
81. Zhang, G., Esteve, P. O., Chin, H. G., Terragni, J., Dai, N., Correa, I. R., Jr., and Pradhan, S. (2015) Nucleic acids research 43, 6112-6124
82. Hwang, S., Gou, Z., and Kuznetsov, I. B. (2007) Bioinformatics 23, 634-636
83. Yan, C., Terribilini, M., Wu, F., Jernigan, R. L., Dobbs, D., and Honavar, V. (2006) BMC bioinformatics 7, 262
84. Asaumi, M., Iijima, K., Sumioka, A., Iijima-Ando, K., Kirino, Y., Nakaya, T., and Suzuki, T. (2005) Journal of biochemistry 137, 147-155
85. Pace, C. N. (1990) Trends in biotechnology 8, 93-98
86. Lowary, P. T., and Widom, J. (1998) Journal of molecular biology 276, 19-42
87. Okano, M., Xie, S., and Li, E. (1998) Nature genetics 19, 219-220
88. Song, J., Teplova, M., Ishibe-Murakami, S., and Patel, D. J. (2012) Science 335, 709-712
89. Quenneville, S., Verde, G., Corsinotti, A., Kapopoulou, A., Jakobsson, J., Offner, S., Baglivo, I., Pedone, P. V., Grimaldi, G., Riccio, A., and Trono, D. (2011) Molecular cell 44, 361-372
90. Ideraabdullah, F. Y., and Bartolomei, M. S. (2011) Molecular cell 44, 341-342
91. Strogantsev, R., Krueger, F., Yamazawa, K., Shi, H., Gould, P., Goldman-Roberts, M., McEwen, K., Sun, B., Pedersen, R., and Ferguson-Smith, A. C. (2015) Genome biology 16, 112
92. Myklebust, L. M., Stove, S. I., and Arnesen, T. (2015) Oncotarget 6, 34041-34042
93. Bromberg, Y., and Rost, B. (2009) BMC bioinformatics 10 Suppl 8, S8
94. Gorman, J., and Greene, E. C. (2008) Nature structural & molecular biology 15, 768-774
95. Yen, H. C., Xu, Q., Chou, D. M., Zhao, Z., and Elledge, S. J. (2008) Science 322, 918-923
96. Monera, O. D., Kay, C. M., and Hodges, R. S. (1994) Protein science : a publication of the Protein Society 3, 1984-1991
97. Magin, R. S., March, Z. M., and Marmorstein, R. (2016) The Journal of biological chemistry 291, 5270-5277
98. Liszczak, G., Arnesen, T., and Marmorstein, R. (2011) The Journal of biological chemistry 286, 37002-37010
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67589-
dc.description.abstract人類N端乙醯轉移酶10蛋白質(hNaa10p)的突變與不正常表現,在嚴重發育遲緩,如致死性奧格登症候或智能障礙,以及癌症生成中扮演重要的角色。我們實驗室發現hNaa10p促使去氧核醣核酸甲基轉移酶1(DNMT1)降低抑癌基因的表現,且在人類肺癌細胞中hNaa10p可結合至特定抑癌基因啟動子。我們實驗室也發現在老鼠胚胎及幹細胞中,Naa10p可與許多特定的印記基因調控區域結合。然而,hNaa10p如何結合至去氧核醣核酸依舊未知,且hNaa10p去氧核醣核酸結合能力與病理角色的關聯也尚未清楚。本論文中,我們利用人類上皮鈣離子依賴性之黏合蛋白(E-cadherin)啟動子以及老鼠H19印記基因調控區域(H19-ICR)作為體外研究模式,並藉由電泳膠遷移遲緩分析(EMSA)與hNaa10p大規模的點突變實驗,以瞭解去氧核醣核酸序列如何被hNaa10p辨識,而hNaa10p上哪些胺基酸對於去氧核醣核酸結合是重要的。第一部份的結果中,我們發現hNaa10p特定結合至E-cadherin啟動子 -53到 -33鹼基對的位置。K165A或奧格登綜合症相關的S37P則降低了hNaa10p結合去氧核醣核酸的能力。K165A突變依然保有N端乙醯轉移酶活性,也說明此突變不太可能影響hNaa10p的整體結構。第二部份的結果證實(1) hNaa10p結合至H19-ICR的GCXGXG序列; (2)老鼠Naa10p變異體一(Variant 1)結合至H19-ICR片段,而老鼠Naa10p變異體二(Variant 2)則失去去氧核醣核酸結合能力; (3)老鼠幹細胞中內源性的Naa10p可結合至H19-ICR片段; (4) hNaa10p可結合至核小體(nucleosomal templates),而人類疾病相關之點突變蛋白則降低此功能; (5) hNaa10p臨床點突變S37P、Y43S、V107F或F128L造成活體外(in vitro)蛋白質穩定性下降,而R83C或R116W則不影響; (6)相較於半甲基與全甲基化的去氧核醣核酸,hNaa10p對於無甲基化的去氧核醣核酸具有較高親和力; (7) hNaa10p促使Dnmt1結合至H19-ICR,而S37P或K165A突變則失去此能力; (8) 在老鼠幹細胞的核萃取蛋白中,Naa10p維持Dnmt1的活性而不影響Dnmt3a/b。總結來說,此體外研究找出Naa10p中對於去氧核醣核酸結合的重要胺基酸,以及去氧核醣核酸序列。更重要是,本研究指出降低去氧核醣核酸結合能力,可能是造成hNaa10p點突變所產生的人類疾病原因之一。zh_TW
dc.description.abstractMutation or abnormal expression of human N-α-acetyltransferase 10 protein (hNaa10p) leads to severe developmental delays or cancer formation, respectively. Our lab previously reported that hNaa10p recruited DNA methyltransferase 1 (DNMT1) to silence tumor suppressor genes (TSG) (Lee et al., 2010). In that study, we demonstrated that hNaa10p associated with specific TSG promoters in human lung cancer cells. Our lab also found that Naa10p bound to multiple imprinting control regions in mouse embryos and ESCs. However, how hNaa10p binds to DNA remains elusive. Nor do we understand whether DNA binding of hNaa10p correlates with its pathological role. In this study, we used the human E-cadherin promoter and the imprinting control region of mouse H19 (H19-ICR) gene as models to characterize the DNA element recognized by Naa10p and the amino acids required for Naa10p DNA binding by the in vitro electromobility shift assay (EMSA) combined with extensive site-directed mutagenesis. Part I of the Result Section indicates that hNaa10p specifically bound to -53 to -33 (relatively to the transcription start site, TSS) of the E-cadherin promoter. Moreover, the K165A or the Ogden syndrome-associated S37P mutation impaired the DNA binding of hNaa10p. Importantly, the K165A mutant still maintains the N-acetyltransferase activity, suggesting that the mutation does not disrupt the overall hNaa10p structure. Part II of the Result Section demonstrates that (1) hNaa10p bound to the GCXGXG motif of H19-ICR; (2) mouse Naa10p (mNaa10p) Variant 1, but not Variant 2, bound to H19-ICR oligo; (3) the endogenous mNaa10p from mouse ESCs bound to H19-ICR oligo; (4) WT hNaaa10p but not human disease-associated mutants bound to H19-ICR oligo and nucleosomal templates; (5) hNaa10p with clinical mutation S37P, Y43S, V107F or F128L but not R83C or R116W, showed impaired protein stability in vitro; (6) hNaa10p preferentially bound to non-methylated mouse H19-ICR, compared to hemi- or fully-methylated DNA; (7) WT hNaa10p but not S37P or K165A mutant enhanced Dnmt1 binding to H19-ICR; and (8) Naa10p maintained the activity of Dnmt1 but not Dnmt3a/b in nuclear extracts of mouse ESCs. In summary, the study reveals the essential residues and DNA element for Naa10p binding to DNA in vitro and suggests that the DNA binding activity might contribute to hNaa10p mutation-associated disease formation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:39:05Z (GMT). No. of bitstreams: 1
ntu-106-D99448006-1.pdf: 7451353 bytes, checksum: 1d83049cb00d49838a9f430269b5d423 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsContents............................................................................................... I
List of Figures..................................................................................... IV
List of Tables...................................................................................... VII
中文摘要............................................................................................. 1
Abstract.............................................................................................. 3
Chapter I Introduction...................................................................... 5
N-α-acetyltransferase (NAT) family carries out N-terminal acetylation of nascent proteins ................................................................................... 6
Naa10p (N-α-acetyltransferase 10 protein) contains acetyltransferase-dependent and -independent functions.................... 7
Naa10p positively or negatively regulates tumor development depending on cancer types.................................................................................... 9
Naa10p is essential for development, metabolism, cell cycle, reproduction, and osteogenesis in different species.................................................... 10
hNaa10p clinical mutations correlate with severe developmental delay.............................................................................. 11
Naa10p controls gene regulation in nucleus......................................... 13
Chapter II Materials and Methods................................................... 14
Protein purification and electromobility shift assay............................. 15
Acetyltransferase activity assay............................................................ 15
Cytoplasmic and nuclear fraction......................................................... 16
Immunoprecipitation............................................................................. 16
DNA methyltransferase activity assay.................................................. 17
Nucleosome reconstitution.................................................................... 18
Structure simulation............................................................................... 19
Far UV circular dichroism (CD)............................................................ 19
Chapter III Results.............................................................................. 20
PART 1 Naa10p binds to the human E-cadherin promoter.
1.1 Wild type (WT) hNaa10p but not the mutant (MT) with K113A or Ogden syndrome-associated S37P binds to the human E-cadherin promoter................................................................................................. 21
1.2 hNaa10p with K165A loses the DNA binding activity but maintains comparable N-terminal acetyltransferase activity.................................. 23
PART 2 Naa10p binds to the imprinting control region (ICR) of mouse H19 (H19-ICR).
2.1 Purified Naa10p but not the mutant with S37P or K165A binds to H19-ICR through the GCXGXG motif................................................. 24
2.2 Cellular Naa10p but not the mutant with S37P binds to H19-ICR oligo...................................................................................................... 26
2.3 hNaa10p residues mutated in patients up-to-date are all required for DNA binding and/or protein stability. .................................................. 27
2.4 hNaa10p with R116W or K165A maintains almost 100% of NAT activity but greatly loses DNA binding activity and all 6 clinical mutations remarkably impair the DNA binding.................................... 28
2.5 hNaa10p preferentially binds to the non-methylated H19-ICR oligo in vitro and in cells.................................................................................... 31
2.6 WT hNaa10p but not clinical mutants bind to nucleosomes........... 32
2.7 Naa10p facilitates DNA methyltransferase 1 (Dnmt1) binding to DNA....................................................................................................... 32
2.8 Naa10p maintains Dnmt1 activity in mouse embryonic stem cells (mESCs)................................................................................................ 34
Chapter IV Discussion........................................................................ 37
1. Nuclear Function of Naa10p............................................................. 38
2. Recombinant Naa10p is a Monomer................................................. 39
3. Identification of Naa10p Complex in Cells...................................... 40
4. Naa10p is a Sequence-specific DNA Binding Protein That Marks the Imprinted Allele...................................................................................... 41
5. Clinical Mutations Impair the DNA Binding Activity of hNaa10p.. 42
6. Analysis of Naa10p Regions Important for Protein Stability and/or NAT Activity......................................................................................... 43
7. Naa10p and Global DNA Methylation.............................................. 45
Figures................................................................................................. 48
Figure 1. Human NAT family proteins use similar residues for N-terminal acetylation............................................................................................. 49
Figure 2. Naa10p is highly conserved among different species and variants.................................................................................................. 50
Figure 3. hNaa10p specifically binds to -53 to -33 bp (relative to the transcription start site, TSS) of the human E-cadherin promoter. ......... 51
Figure 4. Mutations including Ogden syndrome-associated S37P disrupt hNaa10p from binding to the human E-cadherin promoter (-170 to +30 bp).......................................................................................................... 53
Figure 5. hNaa10p with DNA-binding mutations S37P, R82A, K113A, K148A, R159A/R160A or K167A but not K165A loses the N-terminal acetyltransferase activity....................................................................... 55
Figure 6. hNaa10p with the K165A mutation greatly loses the human E-cadherin promoter (-170 to +30 bp)-binding activity but maintains comparable N-terminal acetyltransferase activity.................................. 56
Figure 7. hNaa10p binds to the GCXGXG motif of the imprinting control region of mouse H19 (mH19-ICR)....................................................... 57
Figure 8. Mutations in the GCXGXG motif disrupt hNaa10p from binding to mouse H19-ICR oligo.......................................................... 59
Figure 9. hNaa10p with K165A or Ogden syndrome-associated S37P mutation greatly loses the DNA binding activity to mouse H19-ICR (mH19-ICR) oligo................................................................................. 61
Figure 10. Mouse Naa10p (mNaa10p) Variant 1, but not Variant 2, binds to mouse H19-ICR oligo....................................................................... 63
Figure 11. Mouse Naa10p Variant 1 with K165A or Ogden syndrome-associated S37P mutation does not bind to mouse H19-ICR (mH19-ICR) oligo.................................................................................. 65
Figure 12. WT hNaa10p but not Ogden syndrome-associated S37P mutant overexpressed in human lung cancer H1299 cells binds to mouse H19-ICR oligo....................................................................................... 66
Figure 13. The endogenous mouse Naa10p (mNaa10p) from mESCs may bind to mouse H19-ICR oligo............................................................... 68
Figure 14. WT hNaa10p but not human disease-associated mutants binds to mouse H19-ICR oligo....................................................................... 69
Figure 15. hNaa10p with clinical mutations Y43S, R83C or F128L does not bind to mouse H19-ICR oligo.......................................................... 71
Figure 16. Residues mutated in patients and required for hNaa10p DNA binding are located in hNaa10p acetyltransferase domain..................... 72
Figure 17. hNaa10p with D66A but not D65A or D66K mutation greatly loses the DNA binding activity.............................................................. 73
Figure 18. The overall secondary structure shows no difference between WT hNaa10p and the mutants used in this study................................... 75
Figure 19. hNaa10p with clinical mutation S37P, Y43S, or V107F, but not R83C or R116W, shows impaired in vitro protein stability............. 76
Figure 20. A summary shows specific hNaa10p residues involved in DNA binding, N-terminal acetyltransferase activity and/or protein stability in this study................................................................................................. 77
Figure 21. hNaa10p preferentially binds to non-methylated mouse H19-ICR oligo........................................................................................ 78
Figure 22. WT hNaa10p but not clinical mutants binds to mouse H19-ICR-reconstituted nucleosomes.................................................... 79
Figure 23. WT hNaa10p but not human disease-associated mutants binds to Widom 601-reconstituted nucleosomes............................................ 80
Figure 24. hNaa10p binds equally to nucleosomes wrapped with non-methylated or methylated Widom 601 probe................................. 82
Figure 25. WT hNaa10p but not S37P, V107F, R116W or K165A mutant enhances DNMT1 binding to mouse H19-ICR...................................... 83
Figure 26. Clinical mutations do not impair hNaa10p binding to FTR domain of Dnmt1 in vitro....................................................................... 85
Figure 27. Dnmt1 binding to DNA is decreased in nuclear extracts of Naa10-KO mESCs................................................................................. 86
Figure 28. Naa10p maintains Dnmt1 activity in nuclear extracts of mESCs.................................................................................................... 88
Figure 29. Dnmt1 immunoprecipitated from Naa10-KO mESCs is impaired in the DNA methyltransferase activity.................................... 89
Figure 30. Naa10-KO mESCs are impaired in the activity of Dnmt1 but not Dnmt3a/3b....................................................................................... 90
Figure 31. A flexible and non-conserved loop (β3-β4) likely mediates substrate specificity and protein stability of Naa10p from different species................................................................................................... 91
Supplementary Figures..................................................................... 93
Tables.................................................................................................. 99
Table 1. List of primers....................................................................... 100
Table 2. The expression level of hNaa10p in different cancers......... 102
Table 3. Features of human patients with hNaa10p mutations.......... 103
Table 4. The diseases associated with NAT family proteins............. 104
Table 5. Phenotypes of different Naa10-KO animal models............. 105
Table 6. Protein substrates acetylated by hNaa10p at internal lysines................................................................................................. 106
Table 7. The imprinted genes associated human disease ................... 107
Table 8. Imprinted genes dysregulated in Naa10-KO mESCs.......... 108
Table 9. Imprinted genes dysregulated in Trim28-KO mESCs......... 111
Table 10. Imprinted genes dysregulated in Zfp57-KO mESCs.......... 114
Table 11. Histone or DNA modifying enzymes dysregulated in Naa10-KO mESCs............................................................................. 117
Table 12. Histone or DNA modifying enzymes dysregulated in Naa10-KO mouse embryos............................................................... 120
Table 13. Structure information of Naa10......................................... 123
Table 14. Histones or histone modifications required for Dnmt1 binding to DNA.............................................................................................. 124
References........................................................................................... 125
dc.language.isoen
dc.subjectOgden疾病zh_TW
dc.subjectN端乙醯轉移?10蛋白質zh_TW
dc.subject電泳膠遲緩分析zh_TW
dc.subject印記基因zh_TW
dc.subject雙股去氧核醣核酸結合zh_TW
dc.subject嚴重發育遲緩zh_TW
dc.subjectEMSAen
dc.subjectNaa10p/ard1en
dc.subjectOgden syndromeen
dc.subjectDNA bindingen
dc.subjectimprintingen
dc.subjectN-α-acetyltransferaseen
dc.title乙醯基轉移酶Naa10p 與去氧核醣核酸
體外結合能力之探討
zh_TW
dc.titleIn Vitro Characterization of the DNA Binding Activity of
N-α-acetyltransferase 10 Protein
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee呂勝春(Sheng-Chung Lee),沈哲鯤(Che-Kun James Shen),施修明(Hsiu-Ming Shih),蔡欣祐(Hsin-Yue Tsai)
dc.subject.keywordN端乙醯轉移?10蛋白質,Ogden疾病,嚴重發育遲緩,雙股去氧核醣核酸結合,印記基因,電泳膠遲緩分析,zh_TW
dc.subject.keywordN-α-acetyltransferase,Naa10p/ard1,Ogden syndrome,DNA binding,imprinting,EMSA,en
dc.relation.page132
dc.identifier.doi10.6342/NTU201702082
dc.rights.note有償授權
dc.date.accepted2017-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
7.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved