Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67580
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorKuei-Yueh Koen
dc.contributor.author柯逵悅zh_TW
dc.date.accessioned2021-06-17T01:38:39Z-
dc.date.available2022-08-07
dc.date.copyright2017-08-07
dc.date.issued2017
dc.date.submitted2017-07-31
dc.identifier.citationAbzhanov A (2004) Bmp4 and Morphological Variation of Beaks in Darwin’s Finches. Science (80-. ). 305: 1462–1465
Abzhanov A (2013) von Baer’s law for the ages: lost and found principles of developmental evolution. Trends Genet. 29: 712–722
Akhshabi S, Sarda S, Dovrolis C & Yi S (2014) An explanatory evo-devo model for the developmental hourglass. F1000Research 3: 156
Banerji CRS, Miranda-Saavedra D, Severini S, Widschwendter M, Enver T, Zhou JX & Teschendorff AE (2013) Cellular network entropy as the energy potential in Waddington’s differentiation landscape. Sci. Rep. 3: 3039
Brauckmann S (2012) Karl Ernst von Baer (1792-1876) and Evolution. Int. J. Dev. Biol. 56: 653–660
Capra JA, Williams AG, Pollard KS, Hackett J & O’Donovan C (2012) ProteinHistorian: Tools for the Comparative Analysis of Eukaryote Protein Origin. PLoS Comput. Biol. 8: e1002567
Chen C-Y, Ho A, Huang H-Y, Juan H-F & Huang H-C (2014) Dissecting the Human Protein-Protein Interaction Network via Phylogenetic Decomposition. Sci. Rep. 4: 7153
Cheng F, Liu C, Shen B & Zhao Z (2016) Investigating cellular network heterogeneity and modularity in cancer: a network entropy and unbalanced motif approach. BMC Syst. Biol. 10 Suppl 3: 65
Cheng X, Hui JHL, Lee YY, Wan Law PT & Kwan HS (2015a) A Developmental Hourglass in Fungi. Mol. Biol. Evol. 32: 1556–1566
Cheng X, Hui JHL, Lee YY, Wan Law PT & Kwan HS (2015b) A & quot;Developmental Hourglass& quot; in Fungi. Mol. Biol. Evol. 32: 1556–1566
Demetrius L (1974) Demographic parameters and natural selection. Proc. Natl. Acad. Sci. U. S. A. 71: 4645–7
Demetrius L & Manke T (2005) Robustness and network evolution—an entropic principle. Phys. A Stat. Mech. its Appl. 346: 682–696
Demetrius L, Matthias Gundlach V & Ochs G (2004) Complexity and demographic stability in population models. Theor. Popul. Biol. 65: 211–225
Domazet-Loso T, Brajković J & Tautz D (2007) A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 23: 533–539
Domazet-Lošo T & Tautz D (2010) A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468: 815–818
Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev. Suppl. 42: 135–142
Freeman LC (1978) Centrality in social networks conceptual clarification. Soc. Networks 1: 215–239
Garstang W (1922) The Theory of Recapitulation: A Critical Re-statement of the Biogenetic Law. J. Linn. Soc. London, Zool. 35: 81–101
Gerstein MB, Lu ZJ, VanNostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY, Robilotto R, Rechtsteiner A, Ikegami K, Alves P, Chateigner A, Perry M, Morris M, Auerbach RK, Feng X, Leng J, Vielle A, Niu W, Rhrissorrakrai K, et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330: 1775–87
Gerstein MB, Rozowsky J, Yan K-K, Wang D, Cheng C, Brown JB, Davis CA, Hillier L, Sisu C, Li JJ, Pei B, Harmanci AO, Duff MO, Djebali S, Alexander RP, Alver BH, Auerbach R, Bell K, Bickel PJ, Boeck ME, et al (2014) Comparative analysis of the transcriptome across distant species. Nature 512: 445–448
Gómez-Gardeñes J & Latora V (2008) Entropy rate of diffusion processes on complex networks. Phys. Rev. E 78: 65102
daGraca LS, Zimmerman KK, Mitchell MC, Kozhan-Gorodetska M, Sekiewicz K, Morales Y & Patterson GI (2003) DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGF pathway to regulate C. elegans dauer development. Development 131: 435–446
Gudmundsson A, Mohajeri N, Newman MEJ, Batty M & West GB (2013) Entropy and order in urban street networks. Sci. Rep. 3: 661–703
Hänzelmann S, Castelo R & Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14: 7
Hazkani-Covo E, Wool D & Graur D (2005) In search of the vertebrate phylotypic stage: A molecular examination of the developmental hourglass model and von Baer’s third law. J. Exp. Zool. Part B Mol. Dev. Evol. 304B: 150–158
Holland ND (2011) Walter Garstang: a retrospective. Theory Biosci. 130: 247–258
Horder TJ (2006) Gavin Rylands de Beer: how embryology foreshadowed the dilemmas of the genome. Nat. Rev. Genet. 7: 892–898
Irie N & Kuratani S (2011) Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2: 248
Irie N & Kuratani S (2014) The developmental hourglass model: a predictor of the basic body plan? Development 141: 4649–4655
Irie N & Sehara-Fujisawa A (2007) The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information. BMC Biol. 5: 1
Jeong H, Mason SP, Barabási A-L & Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411: 41–42
Jin S, Li Y, Pan R, Zou X & Alon U (2014) Characterizing and controlling the inflammatory network during influenza A virus infection. Sci. Rep. 4: 8346–8351
Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM & Tomancak P (2010) Gene expression divergence recapitulates the developmental hourglass model. Nature 468: 811–814
Levin M, Anavy L, Cole AG, Winter E, Mostov N, Khair S, Senderovich N, Kovalev E, Silver DH, Feder M, Fernandez-Valverde SL, Nakanishi N, Simmons D, Simakov O, Larsson T, Liu S-Y, Jerafi-Vider A, Yaniv K, Ryan JF, Martindale MQ, et al (2016) The mid-developmental transition and the evolution of animal body plans. Nature 531: 637–641
Levin M, Hashimshony T, Wagner F & Yanai I (2012) Developmental Milestones Punctuate Gene Expression in the Caenorhabditis Embryo. Dev. Cell 22: 1101–1108
Li JJ, Huang H, Bickel PJ & Brenner SE (2014) Comparison of D. melanogaster and C. elegans developmental stages, tissues, and cells by modENCODE RNA-seq data. Genome Res. 24: 1086–101
Li S, He J & Song K (2016) Network Entropies of the Chinese Financial Market. Entropy 18: 331
Li Y, Yi M & Zou X (2013) Identification of the molecular mechanisms for cell-fate selection in budding yeast through mathematical modeling. Biophys. J. 104: 2282–2294
Manke T, Demetrius L & Vingron M (2006) An entropic characterization of protein interaction networks and cellular robustness. J. R. Soc. Interface 3: 843–850
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu C-H, Cohen CS, Tomaso AWDe, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, et al (2015) The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol. Dev. 17: 198–219
NCBI Resource Coordinators (2015) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 43: D6-17
Neme R & Tautz D (2013) Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14: 117
Olsen JV., Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S & Mann M (2010) Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Sci. Signal. 3: ra3-ra3
Park Y, Lim S, Nam J-W & Kim S (2016) Measuring intratumor heterogeneity by network entropy using RNA-seq data. Sci. Rep. 6: 37767
Pennisi E (2002) Evo-Devo Enthusiasts Get Down to Details. Science (80-. ). 298: 953–955
Piasecka B, Lichocki P, Moretti S, Bergmann S & Robinson-Rechavi M (2013) The Hourglass and the Early Conservation Models—Co-Existing Patterns of Developmental Constraints in Vertebrates. PLoS Genet. 9: e1003476
Poe S & Wake MH (2004) Quantitative Tests of General Models for the Evolution of Development. Am. Nat. 164: 415–422
Quint M, Drost H-G, Gabel A, Ullrich KK, Bönn M & Grosse I (2012) A transcriptomic hourglass in plant embryogenesis. Nature 490: 98–101
Quiring R, Walldorf U, Kloter U & Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265: 785–9
Raff RA (1996) The shape of life : genes, development, and the evolution of animal form University of Chicago Press
Raman K, Damaraju N & Joshi GK (2014) The organisational structure of protein networks: revisiting the centrality-lethality hypothesis. Syst. Synth. Biol. 8: 73–81
Sandhu RS, Georgiou TT & Tannenbaum AR (2016) Ricci curvature: An economic indicator for market fragility and systemic risk. Sci. Adv. 2: e1501495
Schumacher B, Hofmann K, Boulton S & Gartner A (2001) The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr. Biol. 11: 1722–1727
Švorcová J (2012) The phylotypic stage as a boundary of modular memory: non mechanistic perspective. Theory Biosci. 131: 31–42
Teschendorff AE, Banerji CRS, Severini S, Kuehn R & Sollich P (2015) Increased signaling entropy in cancer requires the scale-free property of protein interaction networks. Sci. Rep. 5: 9646
Teschendorff AE & Severini S (2010) Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst. Biol. 4: 104
Teschendorff AE, Sollich P & Kuehn R (2014) Signalling entropy: A novel network-theoretical framework for systems analysis and interpretation of functional omic data. Methods 67: 282–293
Waddington C. H. (1942) Canalization of development and the inheritance of acquired characters. Nature 150: 563–565
West J, Bianconi G, Severini S & Teschendorff AE (2012) Differential network entropy reveals cancer system hallmarks. Sci. Rep. 2: 802
Xiang D, Venglat P, Tibiche C, Yang H, Risseeuw E, Cao Y, Babic V, Cloutier M, Keller W, Wang E, Selvaraj G & Datla R (2011) Genome-Wide Analysis Reveals Gene Expression and Metabolic Network Dynamics during Embryo Development in Arabidopsis. Plant Physiol. 156: 346–356
Xue L, Cai J-Y, Ma J, Huang Z, Guo M-X, Fu L-Z, Shi Y-B & Li W-X (2013) Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis. BMC Genomics 14: 568
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67580-
dc.description.abstract發育是經由一系列的分裂、調控、與決定所構成。經過這一系列發育的過程,不同的物種由一顆受精卵成長成形態迥異的個體。科學家試圖提出各種演化發育的模型來描述各個物種發育過程的異同;其中,就以 funnel model 與 hourglass model (發育砂石漏模型) 最為有名。
Funnel model敘述個體發育時,會先從一般共有的特徵一步一步發育出物種特有的特徵。另一方面,hourglass model敘述各個物種在發育時期中有一個時期的相似性會特別高。這一段時期被稱為 phylotypic stage。藉由比較各個物種發育時期的轉錄體,不同研究均指向 hourglass model。儘管有證據指出 phylotypic stage 的存在,然而,這其中的演化上的解釋以及背後的分子機轉仍舊尚未被提出。
在我們的研究中,我們利用網路與生物途徑分析去探討這個問題。利用基因關聯網路與基因表現資料,我們首先量測生物網路在不同發育時期的隨機性。這樣的分析讓我們能夠了解生物網路中的隨機性隨著發育過程的變化。接下來,我們試著計算出各個生物途徑在發育過程的動態變化。希望利用各個物種不同功能的動態變化來深入比較不同物種發育過程。藉由系統性的網路分析觀點,我們的結果提供了另一個觀點來比較不同的胚胎發育。
zh_TW
dc.description.abstractEach developmental process consists of a series of divisions, regulations, and decisions. Throughout different series of developmental instructions, a fertilized egg of each species develops into distinct multicellular organism, which may be totally different from each other. Various evo-devo models have been proposed to describe the similarities and differences among developmental processes. The funnel model and hourglass model are the most well-known among them.
The funnel model states that the development proceeds from general features to species-specific patterns. On the other hand, the hourglass model states that higher similarity exists during the formation of body plan among the embryogenesis of different species. The stage with the highest conservation is referred as the phylotypic stage. By comparing the transcriptomic data among different species, several studies have been reported to support the idea of hourglass model. Although pieces of evidence indicate an evolutionary constraint during phylotypic stage, the evolutionary explanation and molecular mechanism behind this phenomenon, however, are not fully understood yet.
In our study, we aimed to tackle the problem via network and pathway analyses. Using the gene association network information and gene expression data, we first measured the stochasticity within the biological network during the developmental process. Such analysis enables us to trace and compare the changes of network randomness among developmental processes of different species. Next, we sketched out the pathway dynamics during developmental process in order to narrow down our study from global network connections to detailed molecular regulations. With the systematic network view of developmental process, our results provided an alternative aspect of comparative embryology.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:38:39Z (GMT). No. of bitstreams: 1
ntu-106-R02b48003-1.pdf: 4529084 bytes, checksum: 75e5aa80efdc5fa04b1b320230b3b543 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
Chapter 1 INTRODUCTION 1
1.1 Models in evolutionary developmental biology 1
1.2 Transcriptomic analysis of the hourglass model 4
1.3 Hypothesis for mechanism behind the hourglass model 5
1.4 Network entropy 7
1.5 Motivation 9
Chapter 2 MATERIALS AND METHODS 11
2.1 Pathway information and function association network 11
2.2 Gene association network 11
2.3 Genomic phylostratigraphy 11
2.4 Transcriptome age index 12
2.5 Transcriptomes of developmental process 12
2.6 Functional enrichment analysis 13
2.7 Network entropy analysis 13
2.8 Gene set variation analysis (GSVA) 16
2.9 Time peak index 17
2.10 Pathway similarity score 17
2.11 Activity conservative score 18
Chapter 3 RESULTS 19
3.1 Phylostratigraphy map and transcriptional age index 19
3.2 Network entropy 20
3.3 Compare the KEGG and phylostratigraphy 21
3.4 Pathway activity along the development process 21
3.5 Cross species comparison of developmental stages 22
3.6 Conserved pattern in KEGG pathway network 23
Chapter 4 DISCUSSION AND CONCLUSION 25
TABLES 28
FIGURES 48
REFERENCES 62
dc.language.isoen
dc.title研究發育過程轉錄體的網路隨機性與動態生物途徑分析來探討發育過程的演化zh_TW
dc.titlePhylotranscriptomic patterns of network stochasticity and pathway dynamics during embryogenesisen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor歐陽彥正(Yen-Jen Oyang)
dc.contributor.oralexamcommittee黃宣誠(Hsuan-Cheng Huang),施純傑(Chun-Chieh Shih),莊樹諄(Trees-Juen Chuang)
dc.subject.keyword基因體親緣分層,基因關聯網路,發育砂石漏模型,轉錄體年齡圖譜,zh_TW
dc.subject.keywordDevelopmental hourglass,genomic phylostratigraphy,gene association network,network entropy,functional class scoring,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201702130
dc.rights.note有償授權
dc.date.accepted2017-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept基因體與系統生物學學位學程zh_TW
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
4.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved