Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67571
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢義隆
dc.contributor.authorPo-An Panen
dc.contributor.author潘柏安zh_TW
dc.date.accessioned2021-06-17T01:38:12Z-
dc.date.available2022-08-08
dc.date.copyright2017-08-08
dc.date.issued2017
dc.date.submitted2017-07-31
dc.identifier.citation[1] Tyreus, B. D., 2011, Distillation–Energy Conservation and Process Control, a 35 Year Perspective, AIChE Annual Meeting, October 16-21, Minneapolis MN, U.S.A.
[2] Luyben, W.L., 2012, Pressure-swing distillation for minimum- andmaximum-boiling homogeneous azeotropes. Ind. Eng. Chem.Res. 51, 10881–10886.
[3] Luyben, W.L., 2013a, Comparison of extractive distillation andpressure-swing distillation for acetone/chloroformseparation. Comput. Chem. Eng. 50, 1–7.
[4] Honghai, L., Yi, J., Shaohui, T., 2015. The application of MPSOalgorithm to the optimal design of azeotropic distillationcolumn. Chem. Ind. Eng. 5, 017.
[5] Ryan, P. J., & Doherty, M. F. 1989, Design/optimization of ternary heterogeneous azeotropic distillation sequences. AIChE Journal, 35(10), 1592-1601.
[6] An, Y., Li, W., Li, Y., Huang, S., Ma, J., Shen, C., Xu, C., 2015, Design/optimization of energy-saving extractive distillationprocess by combining preconcentration column andextractive distillation column. Chem. Eng. Sci. 135, 166–178.
[7] You, X., Rodriguez-Donis, I., Gerbaud, V., 2015. Improved designand efficiency of the extractive distillation process foracetone–methanol with water. Ind. Eng. Chem. Res. 54,491–501.
[8] Lewis, W., 1928, Dehydrating alcohol and the like, U.S. Patent,1,676,700.
[9] Roscoe, H. E., & Dittmar, W. 1860,. XV.—On the absorption of hydrochloric acid and ammonia in water.”Quarterly Journal of the Chemical Society of London,”12(1), 128-151.
[10] Knapp, J. P. , 1991, Exploiting pressure effects in the distillation of homogeneous azeotropic mixtures.
[11] Klein, A., 2008, Azeotropic Pressure Swing Distillation(Dissertation). TU, Berlin.
[12] Luyben, W.L., Chien, I.-L., 2011, Design and Control of DistillationSystems for Separating Azeotropes. John Wiley & Sons, NewYork.
[13] Munoz, R., Montón, J.B., Burguet, M.C., de la Torre, J., 2006, Separation of isobutyl alcohol and isobutyl acetate byextractive distillation and pressure-swing distillation:simulation and optimization. Sep. Purif. Technol. 50, 175–183.
[14] Lladosa, E., Montón, J.B., Burguet, M., 2011, Separation ofdi-n-propyl ether and n-propyl alcohol by extractivedistillation and pressure-swing distillation: computersimulation and economic optimization. Chem. Eng. Process.50, 1266–1274.
[15] Luyben, W. L., 2013 Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers & Chemical Engineering, 50, 1-7.
[16] Luo, H., Liang, K., Li, W., Li, Y., Xia, M., & Xu, C. 2014, Comparison of pressure-swing distillation and extractive distillation methods for isopropyl alcohol/diisopropyl ether separation. Industrial & Engineering Chemistry Research, 53(39), 15167-15182.
[17] Knapp, J.P., Doherty, M.F., 1992, A new pressure-swing-distillationprocess for separating homogeneous azeotropic mixtures.Ind. Eng. Chem. Res. 31, 346–357.
[18] Grützner T, Hasse H, Lang N, Siegert M, Ströfer E. 2007, Development of a new industrial process for trioxane production. Chem Eng Sci 62:5613–20.
[19] Zhu, Z., Xu, D., Liu, X., Zhang, Z., & Wang, Y. 2016, Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation. Separation and Purification Technology, 169, 66-77.
[20] Luyben, W. L., 2017, Control of a triple-column pressure-swing distillation process. Separation and Purification Technology, 174, 232-244.
[21] Zhu, Z., Xu, D., Jia, H., Zhao, Y., & Wang, Y., 2017, Heat Integration and Control of a Triple-Column Pressure-Swing Distillation Process. Industrial & Engineering Chemistry Research, 56(8), 2150-2167.
[22] Pham, H. N.; Doherty, M. F., 1990, Design and synthesis of heterogeneous azeotropic distillations—I. Heterogeneous phase diagrams. Chemical Engineering Science, 45, (7), 1823-1836.
[23] Doherty, M. F.; Malone, M. F., 2001, Conceptual design of distillation systems. McGraw-Hill Science/Engineering/Math:
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67571-
dc.description.abstract一般的蒸餾技術是很難分離三成分共沸混合物,因共沸物與蒸餾邊界的存在,不利於蒸餾技術的應用,然而,可以藉由觀察一三成分混合物之蒸餘曲線圖,若其蒸餾邊界隨著壓力的移動有明顯的改變,三塔變壓蒸餾會是一個合適的選擇來分離此混合物。本論文將討論利用三塔變壓蒸餾來分離具有不同數量共沸物之三成分混合物。本論文利用Aspen Plus v8.4此商用模擬軟體來模擬所有的穩態程序。
第一個系統為丙醇/丙酮/甲苯,在常壓下形成一個共沸物,在其蒸餘曲線圖中形成一條蒸餾邊界且其隨著壓力的移動十分明顯,變壓蒸餾程序為一合適之分離程序。在傳統的變壓蒸餾中,面對到此混合物會先將最輕之組成丙酮從系統中分離,接著再進入後續的雙塔變壓蒸餾程序分離剩下的兩個成分。三塔變壓蒸餾程序是利用蒸餘曲線圖中邊界的移動來分離三成分混合物,且採用丙醇-甲苯-丙酮此種分離次序。
甲醇/乙醇/甲乙酮此種混合物在蒸餘曲線圖上常壓時會形成兩個共沸物與一條蒸餾邊界,對於一般的具有兩個共沸物之三成分混合物,三塔變壓蒸餾是很難應用在此混合物上的,然而,甲醇-甲乙酮之共沸物在高壓時會消失,因此傳統變壓蒸餾與三塔變壓蒸餾皆可應用在此混合物上。乙醇/乙酸乙酯/四氯化碳此種混合物在常壓下會形成三個共沸物,其蒸餘曲線圖中之蒸餾邊界隨著壓力移動明顯,此研究將討論三塔變壓蒸餾不同的分離次序對年度總成本的影響。己烷/甲醇/乙酸甲酯之混合物在常壓時形成四個共沸物,其邊界也會隨著壓力改變而移動,此三塔變壓蒸餾程序最適化後得到最低的年度總成本。
本研究採用連續疊代法來做四個系統之最適化,其最適化程序之中存在多個變數,因此本研究採用較為簡化的最適化程序,並以年度總成本為目標函數,完成最適化程序。
zh_TW
dc.description.abstractTriple column pressure swing distillation (TCPSD) can be a promising method to separate azeotropic ternary mixtures. In order to adopt this configuration, a pre-requisite is that the distillation boundaries move apparently under different operating pressures, and this can be checked through the residue curve map (RCM). In this thesis, a rigorous and extensive study on TCPSD is performed, with several separation system containing different amount of azeotropes as demonstration. All of the simulation work is implemented in Aspen Plus v8.4.
The first separation system is the Propanol/acetone/toluene system, which forms an azeotrope. In conventional pressure swing distillation process (CPSD), the lightest component acetone is separated at first column, with propanol and toluene obtained from the flow-up binary pressure swing distillation. For TCPSD, the separation sequence is propanol-toluene-acetone by using the moving distillation boundary based on different operating pressure.
The second system studied is the Methanol/ethanol/methyl ethyl ketone (MEK) mixture, which forms two azeotropes, one between methanol-MEK and another between ethanol-MEK. It RCM presents one distillation boundary at atmosphere. For a typical mixture with two azeotropes, it is hard to obtain three product with high purity by TCPSD. However, for this system, methanol-MEK azeotrope pair disappears at high pressure, so TCPSD can be used in this mixture.
The third system, Ethanol/ethyl acetate (EtAc)/carbon chloride (CCl4) mixture, forms three azeotropes. By investigating the pressure-sensitive moving boundaries, the complex azeotropic mixture can be separated by TCPSD with a different separation configuration discussed in this research. The fourth system, Methanol/methyl acetate (MeAc)/ hexane system, forms four azeotropes and its triangle diagram shows several distillation boundaries which moves apparently as pressure changes.
Throughout the four systems studied in this thesis, sequential iterative method is used to optimize all the flowsheets with minimized TAC as the objective function. Because there are quite a few design and operating variables need to be optimized, some simplification is need to reasonably relieve the tasks. After that, the optimal cases of CPSD and TCPSD are directly compared, in order to get a deeper insight into the feasibilities and advantages when applying TCPSD configuration to different separation systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:38:12Z (GMT). No. of bitstreams: 1
ntu-106-R04524080-1.pdf: 6463918 bytes, checksum: 95b8c28dcfd3df3311323324259f5c60 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 III
摘要 V
Abstract VII
目錄 IX
圖目錄 XIII
表目錄 XVII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 9
1.4 組織章節 10
第2章 熱力學模型與蒸餘曲線圖 11
2.1 熱力學模型參數 11
2.2 蒸餘曲線圖 13
第3章 具有一個共沸物之混合物 15
3.1 熱力學模型與蒸餘曲線圖 15
3.2 傳統變壓蒸餾之穩態設計 18
3.2.1傳統變壓蒸餾程序之描述 18
3.2.2傳統變壓蒸餾之最適化 19
3.2.2.1傳統變壓蒸餾中之變數 19
3.2.2.2程序之最佳化策略 20
3.2.2.3變壓蒸餾程序之塔壓選擇 22
3.2.2.4程序之最適化結果 23
3.3 三塔變壓蒸餾之穩態設計 26
3.3.1 三塔變壓蒸餾程序之概念描述 26
3.3.2 三塔變壓蒸餾程序之最佳化 28
3.3.2.1 三塔變壓蒸餾中的變數 28
3.3.2.2 程序之最佳化策略 28
3.3.2.3 程序之最適化結果 31
3.4 結果與討論 34
第4章 具有兩個共沸物之混合物 35
4.1 三塔變壓蒸餾所遭遇之障礙 35
4.2 熱力學模型與蒸餘曲線圖 39
4.3 傳統變壓蒸餾之穩態設計 41
4.3.1傳統變壓蒸餾程序之描述 41
4.3.2傳統變壓蒸餾程序之最適化 43
4.3.2.1傳統變壓蒸餾中存在之變數 43
4.3.2.2程序之最適化策略 44
4.3.2.3程序之壓力選擇 44
4.3.2.4程序最適化結果 46
4.4 三塔變壓蒸餾之穩態設計 50
4.4.1三塔變壓蒸餾分離之描述 50
4.4.2三塔變壓蒸餾程序之最適化 51
4.4.2.1三塔變壓蒸餾程序中存在之變數 51
4.4.2.2程序之最適化策略 52
4.4.2.3程序之壓力選擇 53
4.4.2.4程序最適化結果 55
4.5 結果與討論 60
第5章 具有三個共沸物之混合物 61
5.1 熱力學模型與蒸餘曲線圖 61
5.2 不同分離序列之程序 64
5.2.1 乙醇-乙酸乙酯-四氯化碳分離序列 65
5.2.2 乙醇-四氯化碳-乙酸乙酯分離序列 67
5.2.3 乙酸乙酯-乙醇-四氯化碳分離序列 69
5.2.4 乙酸乙酯-四氯化碳-乙醇分離序列 71
5.2.5 四氯化碳-乙醇-乙酸乙酯分離序列 73
5.2.6 四氯化碳-乙酸乙酯-乙醇分離序列 75
5.4 結果與討論 77
第6章 具有四個共沸物之混合物 79
6.1 熱力學模型與蒸餘曲線圖 79
6.2 三塔變壓蒸餾程序 82
6.2.1 三塔變壓蒸餾程序之描述 82
6.2.2 三塔變壓蒸餾程序之最適化 84
6.2.2.1 程序存在之變數 84
6.2.2.2 程序之最適化 85
6.2.2.3 程序之塔壓選擇 85
6.2.2.4 程序之最適化結果 87
6.3 結果與討論 91
第7章 結論 92
參考文獻 93
附錄 96
dc.language.isozh-TW
dc.subject三成分共沸混合物zh_TW
dc.subject變壓蒸餾zh_TW
dc.subject最適化zh_TW
dc.subject共沸物zh_TW
dc.subject程序設計zh_TW
dc.subjectprocess designen
dc.subjectPressure swing distillationen
dc.subjectazeotropesen
dc.subjectoptimization processen
dc.subjectternary azeotropic mixtureen
dc.title分離三成分共沸混合物之三塔變壓蒸餾的程序設計zh_TW
dc.titleSeparation of Azeotropic Ternary Mixtures by Triple Column Pressure Swing Distillationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳誠亮,吳哲夫,王國彬,陳逸航
dc.subject.keyword變壓蒸餾,共沸物,程序設計,最適化,三成分共沸混合物,zh_TW
dc.subject.keywordPressure swing distillation,azeotropes,process design,optimization process,ternary azeotropic mixture,en
dc.relation.page97
dc.identifier.doi10.6342/NTU201702229
dc.rights.note有償授權
dc.date.accepted2017-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved