請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張芳嘉 | |
| dc.contributor.author | Yuan-Chun Chiu | en |
| dc.contributor.author | 邱元鈞 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:36:41Z | - |
| dc.date.available | 2017-08-03 | |
| dc.date.copyright | 2017-08-03 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-01 | |
| dc.identifier.citation | 1. Albers, H. E., Walton, J. C., Gamble, K. L., McNeill, J. K. t., & Hummer, D. L. (2017). The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol, 44, 35-82. doi:10.1016/j.yfrne.2016.11.003
2. Altun, A., & Ugur-Altun, B. (2007). Melatonin: therapeutic and clinical utilization. Int J Clin Pract, 61(5), 835-845. doi:10.1111/j.1742-1241.2006.01191.x 3. Assi, H., Candolfi, M., Lowenstein, P. R., & Castro, M. G. (2013). Rodent Glioma Models: Intracranial Stereotactic Allografts and Xenografts. In R. Martínez Murillo & A. Martínez (Eds.), Animal Models of Brain Tumors (pp. 229-243). Totowa, NJ: Humana Press. 4. Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070-1073. doi:10.1126/science.1067262 5. Borbely, A. A., & Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. J Biol Rhythms, 14(6), 557-568. 6. Borbely, A. A., Daan, S., Wirz-Justice, A., & Deboer, T. (2016). The two-process model of sleep regulation: a reappraisal. J Sleep Res, 25(2), 131-143. doi:10.1111/jsr.12371 7. Chang, F.-C., Yi, P.-L., Tsai, C.-H., Lu, M.-K., Chen, Y.-C., & Yang, Y.-W. A Brief Light Pulse And Intracerebroventricular Injection Alter Sleep-Wake Activity In Rats. http://ntur.lib.ntu.edu.tw/handle/246246/245743 8. Clawson, B. C., Durkin, J., & Aton, S. J. (2016). Form and Function of Sleep Spindles across the Lifespan. Neural Plast, 2016, 6936381. doi:10.1155/2016/6936381 9. Davies, W. L., Foster, R. G., & Hankins, M. W. (2012). Focus on molecules: melanopsin. Exp Eye Res, 97(1), 161-162. doi:10.1016/j.exer.2010.07.020 10.Dubourget, R., Sangare, A., Geoffroy, H., Gallopin, T., & Rancillac, A. (2017). Multiparametric characterization of neuronal subpopulations in the ventrolateral preoptic nucleus. Brain Struct Funct, 222(3), 1153-1167. doi:10.1007/s00429-016-1265-2 11.Ecker, J. L., Dumitrescu, O. N., Wong, K. Y., Alam, N. M., Chen, S. K., LeGates, T., . . . Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron, 67(1), 49-60. doi:10.1016/j.neuron.2010.05.023 12.Garcia-Rill, E., Luster, B., Mahaffey, S., Bisagno, V., & Urbano, F. J. (2015). Pedunculopontine arousal system physiology - Implications for insomnia. Sleep Sci, 8(2), 92-99. doi:10.1016/j.slsci.2015.06.002 13.Golombek, D. A., & Rosenstein, R. E. (2010). Physiology of circadian entrainment. Physiol Rev, 90(3), 1063-1102. doi:10.1152/physrev.00009.2009 14.Graham, D. M., & Wong, K. Y. (1995). Melanopsin-expressing, Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs). In H. Kolb, E. Fernandez, & R. Nelson (Eds.), Webvision: The Organization of the Retina and Visual System. Salt Lake City (UT): University of Utah Health Sciences Center. 15.Gringras, P., Middleton, B., Skene, D. J., & Revell, V. L. (2015). Bigger, Brighter, Bluer-Better? Current Light-Emitting Devices - Adverse Sleep Properties and Preventative Strategies. Front Public Health, 3, 233. doi:10.3389/fpubh.2015.00233 16. Hardeland, R., Pandi-Perumal, S. R., & Cardinali, D. P. (2006). Melatonin. Int J Biochem Cell Biol, 38(3), 313-316. doi:10.1016/j.biocel.2005.08.020 17. Hattar, S., Lucas, R. J., Mrosovsky, N., Thompson, S., Douglas, R. H., Hankins, M. W., . . . Yau, K. W. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature, 424(6944), 76-81. doi:10.1038/nature01761 18. Herzog, E. D. (2007). Neurons and networks in daily rhythms. Nat Rev Neurosci, 8(10), 790-802. doi:10.1038/nrn2215 19. Liu, Z., Gan, L., Luo, D., & Sun, C. (2017). Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue. J Pineal Res, 62(4). doi:10.1111/jpi.12383 20. Lu, J., Greco, M. A., Shiromani, P., & Saper, C. B. (2000). Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci, 20(10), 3830-3842. 21. Lucas, R. J., Lall, G. S., Allen, A. E., & Brown, T. M. (2012). How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. Prog Brain Res, 199, 1-18. doi:10.1016/b978-0-444-59427-3.00001-0 22. Moore, R. Y. (2007). Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med, 8 Suppl 3, 27-33. doi:10.1016/j.sleep.2007.10.003 23. Morgan, D., & Tsai, S. C. (2015). Sleep and the endocrine system. Crit Care Clin, 31(3), 403-418. doi:10.1016/j.ccc.2015.03.004 24. Morgan, P. J., Barrett, P., Howell, H. E., & Helliwell, R. (1994). Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int, 24(2), 101-146. 25. Poe, G. R., Walsh, C. M., & Bjorness, T. E. (2010). Cognitive neuroscience of sleep. Prog Brain Res, 185, 1-19. doi:10.1016/b978-0-444-53702-7.00001-4 26. Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257-1263. doi:10.1038/nature04284 27. Scammell, T. E., Arrigoni, E., & Lipton, J. O. (2017). Neural Circuitry of Wakefulness and Sleep. Neuron, 93(4), 747-765. doi:10.1016/j.neuron.2017.01.014 28. Schmidt, T. M., Chen, S. K., & Hattar, S. (2011). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci, 34(11), 572-580. doi:10.1016/j.tins.2011.07.001 29. Schmidt, T. M., & Kofuji, P. (2011). Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. J Comp Neurol, 519(8), 1492-1504. doi:10.1002/cne.22579 30. Schwartz, J. R., & Roth, T. (2008). Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol, 6(4), 367-378. doi:10.2174/157015908787386050 31. Sekharan, S., Wei, J. N., & Batista, V. S. (2012). The active site of melanopsin: the biological clock photoreceptor. J Am Chem Soc, 134(48), 19536-19539. doi:10.1021/ja308763b 32. Sexton, T., Buhr, E., & Van Gelder, R. N. (2012). Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem, 287(3), 1649-1656. doi:10.1074/jbc.R111.301226 33. Sexton, T. J., & Van Gelder, R. N. (2015). G-Protein Coupled Receptor Kinase 2 Minimally Regulates Melanopsin Activity in Intrinsically Photosensitive Retinal Ganglion Cells. PLoS One, 10(6), e0128690. doi:10.1371/journal.pone.0128690 34. Sherin, J. E., Shiromani, P. J., McCarley, R. W., & Saper, C. B. (1996). Activation of ventrolateral preoptic neurons during sleep. Science, 271(5246), 216-219. 35. Siegel, J. M. (2008). Do all animals sleep? Trends Neurosci, 31(4), 208-213. doi:10.1016/j.tins.2008.02.001 36. Szymusiak, R., & McGinty, D. (2008). Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci, 1129, 275-286. doi:10.1196/annals.1417.027 37. Zhao, H., Ye, L., Wang, Y., Zhou, X., Yang, J., Wang, J., . . . Zou, Z. (2016). Melatonin Increases the Chilling Tolerance of Chloroplast in Cucumber Seedlings by Regulating Photosynthetic Electron Flux and the Ascorbate-Glutathione Cycle. Front Plant Sci, 7, 1814. doi:10.3389/fpls.2016.01814 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67539 | - |
| dc.description.abstract | 隨著科技的發展,現代人們在日常生活中非常頻繁的使用行動裝置,舉例來說,像是智慧型手機與平板電腦等,這些裝置都有螢幕,並且會發出強烈的藍光,藍光的能量在可見光中比較強,長時間的照射可能會導致感光受器受損並影響視覺,但另外重要的是,光線也會影響人類的生理行為,像是生理時鐘與睡眠。
睡眠在人類的生活中扮演重要的腳色,但目前對於睡眠如何產生、如何運作了解的並不多,目前認為影響睡眠有兩個重要的途徑,第一個是透過生理時鐘節律影響睡眠,第二個是透過生理穩態因子的平衡影響睡眠。外在光線變化對於睡眠會造成何種影響以及如何影響並不清楚,本實驗欲研究藍光對於睡眠結構與生理時鐘的影響。 實驗以大鼠作為動物模式,給予三種波長LED光源照射,波長分別為藍光(450-490 nm) 、橘光 (590 nm ~ 635 nm) 與紅光 (620 nm ~ 650 nm) ,照光時間8小時,強度500 lux± 100 lux,光源在12小時亮/暗期循環中額外給予,分為兩組,在暗期額外給予光照或是在亮期額外給予光照,額外照光當天以及照光後連續兩天記錄老鼠的腦波並分析睡眠。為了瞭解光線是如何影響睡眠,另外設計實驗測量褪黑激素在照光後的變化驗證生理時鐘影響睡眠的路徑,以酵素結合免疫吸附試驗 (ELISA) 測量血清中褪黑激素的濃度,在給予暗期藍光照射後選擇四個時間點 (ZT0、 ZT2、 ZT4、ZT6) 測量。 實驗結果發現若在暗期給予額外光照,不論藍光、橘光或紅光組別都在照光當下非快速動眼期睡眠顯著上升並在亮期開始時連續兩個小時下降,節律向後移動兩小時的現象,在這裡我們提出兩個假設:第一個可能是因為睡眠的互補效應導致睡眠量下降;第二個可能是因為光線直接作用於生理時鐘影響睡眠節律延後。在額外光照後兩天的睡眠百分比節律並無顯著差異,另外在亮期給予額外光照的組別不論照光當下或照光後連續兩天睡眠百分比並無顯著差異。 若進一步分析睡眠結構發現睡眠不同階段換的次數增加,NREM sleep bouts上升、duration下降,在額外照光當下與連續兩天睡眠有片段化的趨勢。在測量褪黑激素濃度的實驗中發現給予暗期藍光照射後濃度相對控制組維持在較低的水平且能夠維持至少6小時,代表生理時鐘有發生變化,但要確定生理時鐘的變化需要測量更多時間點。 不只是藍光,不同波長的光線對於睡眠百分比以及結構的影響幾乎相同,褪黑激素濃度被抑制代表生理時鐘確實有變化而且持續到ZT6,這些來自環境中的光線對於我們的生理行為都有著舉足輕重的影響。 | zh_TW |
| dc.description.abstract | In our daily life, we spend a lot of time using the mobile devices, such as smart phones and tablet PCs. People receive the emitted light from the mobile displays. The light is mainly composed by the spectrum of the blue light. The energy of blue light is strong, so it can directly act on photoreceptors and cause vision impairment. However, blue light may also exhibit impacts on human physiology and behaviors, such as the circadian rhythms and sleep-wake activities.
In our study, we investigated the effects of different spectra of light on the sleep architecture and sleep circadian rhythm. We used rats as the animal model. Rats were received different LED light exposures, including the blue light (450 nm ~ 490 nm), orange light (590 nm ~ 635 nm) and red light (620 nm ~ 650 nm) during the last 8 hours of the dark period or the light period in a 12:12h light:dark cycle. The intensity of each light spectrum was 500 lux ± 100 lux. Sleep-wake activities were recorded. Then, we investigated the sleep alterations after the light exposures. We further used melatonin ELISA kit to measure the concentrations of melatonin in rat serum in four time points (ZT0, ZT2, ZT4, ZT6) after blue light exposure. Our result indicated that non-rapid eye movement (NREM) sleep was increased when we gave the 8-h light exposure in dark period. Sleep fluctuation was shift about 2-h after light exposure. If we analyze the sleep percentage in the following two days, we could not see any significant change. There was almost no difference between blue, orange and red light groups. In this case, we have two hypotheses to explain. The first explanation is that NREM sleep was increased during the 8-h light exposure during the dark period, there might be a decrease of NREM sleep in the following light period by a compensatory effect. The other reason is that the light effect directly affected circadian process to change the sleep pattern. On the other hand, the 8-h light exposure given during the light period did not significantly change sleep-wake activities. However, the sleep architectures, including sleep bouts, sleep duration and transition, were changed when rats receive the light exposure either during the dark period or during the light period. NREM bouts were increased, duration was decreased and transition number was increased, indicating sleep was fragmented. The sleep architectures recorded in the following two days also exhibited the fragmentation of sleep activity. We further investigated the change of melatonin concentrations in serum after light exposure and found that the concentrations of melatonin were declined when rats were received the blue light exposure in ZT0, ZT2, ZT4, and ZT6. Our result suggests that the alterations in the sleep architectures and sleep circadian rhythm differed when rats exposed to different light spectra in different zeitgeber times. The NREM sleep architecture became fragmented after light exposure. In blue light group, the melatonin concentration was in low level after blue light exposure. Despite of blue light, other spectrums of light also have effects on circadian rhythms and sleep. In our daily life, it is important to consider the light effect from our environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:36:41Z (GMT). No. of bitstreams: 1 ntu-106-R04629004-1.pdf: 3599661 bytes, checksum: a048d719117c4a4088d0eeea9f68d77a (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員審定書 I
中文摘要 II Abstract IV 目錄 VI 圖目錄 VIII 一、 前言 1 1. 研究背景 1 1-1. 睡眠生理行為與機制 2 1-2. Circadian process 3 1-3. 褪黑激素 (Melatonin) 4 1-4. ipRGCs(intrinsically photosensitive retina ganglion cells) 5 1-5. Homeostatic process 6 2. 研究目的 7 二、材料與方法 8 實驗一、不同波長光源對於大鼠睡眠行為的影響 8 1. 實驗動物 8 2. 實驗光源 8 3. 腦波EEG(electroencephalography)睡眠分析 10 4. 實驗流程 12 實驗二、褪黑激素濃度測定 13 1. 實驗動物 13 2. Serum extraction 13 3. 酵素結合免疫吸附試驗 (ELISA) 13 4. 實驗流程 14 三、 結果 15 1. 不同波長光源對於大鼠睡眠行為的影響 15 2. 褪黑激素 (Melatonin) 濃度測定 29 四、討論 30 1. 睡眠百分比與結構分析 31 2. 褪黑激素 (Melatonin) 濃度變化分析 33 五、結論 34 六、附錄 36 七、參考文獻 39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 藍光 | zh_TW |
| dc.subject | 睡眠 | zh_TW |
| dc.subject | 生理時鐘 | zh_TW |
| dc.subject | 褪黑激素 | zh_TW |
| dc.subject | 酵素結合免疫吸附試驗 | zh_TW |
| dc.subject | circadian rhythm | en |
| dc.subject | sleep | en |
| dc.subject | blue light | en |
| dc.subject | ELISA | en |
| dc.subject | melatonin | en |
| dc.title | 藍光對生理時鐘與睡眠的影響 | zh_TW |
| dc.title | Effects of blue light - on circadian rhythm and sleep | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 尹珮璐,徐崇堯,陳世國,李佩玲 | |
| dc.subject.keyword | 藍光,睡眠,生理時鐘,褪黑激素,酵素結合免疫吸附試驗, | zh_TW |
| dc.subject.keyword | blue light,sleep,circadian rhythm,melatonin,ELISA, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU201702354 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-01 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
