Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67536
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林明仁(Ming-Jen Lin) | |
dc.contributor.author | Keng-Chi Chang | en |
dc.contributor.author | 張耕齊 | zh_TW |
dc.date.accessioned | 2021-06-17T01:36:33Z | - |
dc.date.available | 2018-08-13 | |
dc.date.copyright | 2017-08-02 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-01 | |
dc.identifier.citation | American National Election Studies. 2017. “American National Election Study.” http://www.electionstudies.org/nesguide/toptable/tab3_1.htm.
Barberá, Pablo. 2015. “Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using Twitter Data.” Political Analysis 23(1): 76-91. http://dx.doi.org/10.1093/pan/mpu011. Barberá, Pablo, John T. Jost, Jonathan Nagler, Joshua A. Tucker, and Richard Bonneau. 2015. “Tweeting from Left to Right: Is Online Political Communication More Than an Echo Chamber?” Psychological Science 26(10): 1531-1542. http://dx.doi.org/10.1177/0956797615594620. Bauer, Paul C., Pablo Barberá, Kathrin Ackermann, and Aaron Venetz. 2016. “Is the Left-Right Scale a Valid Measure of Ideology?” Political Behavior: 1-31. http://dx.doi.org/10.1007/s11109-016-9368-2. Bond, Robert M., and Solomon Messing. 2015. “Quantifying Social Media’s Political Space: Estimating Ideology from Publicly Revealed Preferences on Facebook.” American Political Science Review 109(1): 62-78. http://dx.doi.org/10.1017/s0003055414000525. Bonica, Adam. 2014. “Mapping the Ideological Marketplace.” American Journal of Political Science 58(2): 367-386. http://dx.doi.org/10.1111/ajps.12062. Bonica, Adam. 2016. “Inferring Roll Call Scores from Campaign Contributions Using Supervised Machine Learning.” Working Paper. https://ssrn.com/abstract=2732913. Calero, Antonio. 2013. “Likes vs. Comments vs. Shares.” http://www.antoniocalero.com/2013/05/06/facebook-likes-comments-shares/. Clinton, Joshua, Simon Jackman, and Douglas Rivers. 2004. “The Statistical Analysis of Roll Call Data.” American Political Science Review 98(2): 355-370. http://dx.doi.org/10.1017/S0003055404001194. Downs, Anthony. 1957. “An Economic Theory of Political Action in a Democracy.” Journal of Political Economy 65(2): 135-150. http://dx.doi.org/10.1086/257897. Eckart, Carl, and Gale Young. 1936. “The Approximation of One Matrix by Another of Lower Rank.” Psychometrika 1(3): 211-218. http://dx.doi.org/10.1007/BF02288367. FiveThirtyEight. 2016. “Who Will Win the Presidency?.” https://projects.fivethirtyeight.com/2016-election-forecast/. Gallup. 2017. “US Conservatives Outnumber Liberals by Narrowing Margin.” January. http://www.gallup.com/poll/201152/conservative-liberal-gap-continues-narrow-tuesday.aspx. Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. London, UK: Chapman & Hall/CRC. Gentzkow, Matthew, Bryan T. Kelly, and Matt Taddy. 2017. “Text as Data.” Working Paper 23276, National Bureau of Economic Research. http://dx.doi.org/10.3386/w23276. Gentzkow, Matthew, and Jesse M. Shapiro. 2011. “Ideological Segregation Online and Offline.” Quarterly Journal of Economics 126(4): 1799-1839. http://dx.doi.org/10.1093/qje/qjr044. Gentzkow, Matthew, Jesse M. Shapiro, and Matt Taddy. 2016. “Measuring Polarization in High-Dimensional Data: Method and Application to Congressional Speech.” Working Paper 22423, National Bureau of Economic Research. http://www.nber.org/papers/w22423. Gervais, Will M., and Maxine B. Najle. 2017. “How Many Atheists Are There?” Social Psychological and Personality Science forthcoming. http://dx.doi.org/10.1177/1948550617707015. Groseclose, Tim, and Jeffrey Milyo. 2005. “A Measure of Media Bias.” Quarterly Journal of Economics 120(4): 1191-1237. http://dx.doi.org/10.1162/003355305775097542. Heckman, James J., and James M. Snyder, Jr. 1997. “Linear Probability Models of the Demand for Attributes with an Empirical Application to Estimating the Preferences of Legislators.” RAND Journal of Economics 28: S142-S189. http://www.jstor.org/stable/3087459. Hotelling, Harold. 1929. “Stability in Competition.” Economic Journal 39 (153): 41-57. http://dx.doi.org/10.2307/2224214. Jessee, Stephen A. 2009. “Spatial Voting in the 2004 Presidential Election.” American Political Science Review 103(1): 59-81. http://dx.doi.org/10.1017/S000305540909008X. Kim, In Song, John Londregan, and Marc Ratkovic. 2017. “Estimating Spatial Preferences from Votes and Text.” Political Analysis forthcoming. http://web.mit.edu/insong/www/pdf/sfa_pa.pdf. National Opinion Research Center. 2017. “General Social Surveys.” https://gssdataexplorer.norc.org/variables/178/vshow. Pew Research Center. 2014. “Political Polarization and Media Habits.” http://www.journalism.org/2014/10/21/political-polarization-media-habits/. Pew Research Center. 2016a. “News Use Across Social Media Platforms 2016.” http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/. Pew Research Center. 2016b. “Social Media Update 2016.” http://www.pewinternet.org/2016/11/11/social-media-update-2016/. Pew Research Center. 2016c. “The Political Environment on Social Media.” http://www.pewinternet.org/2016/10/25/the-political-environment-on-social-media/. Poole, Keith T., and Howard L. Rosenthal. 1985. “A Spatial Model for Legislative Roll Call Analysis.” American Journal of Political Science 29(2): 357-384. http://www.jstor.org/stable/2111172. Poole, Keith T., and Howard L. Rosenthal. 1997. Congress: A Political-Economic History of Roll Call Voting. New York: Oxford University Press. Poole, Keith T., and Howard L. Rosenthal. 2007. Ideology and Congress. New Brunswick, NJ: Transaction Publishers. Princeton Election Consortium. 2016. “Final Projections: Clinton 323 EV, 51 Democratic Senate Seats, GOP House.” http://election.princeton.edu/2016/11/08/final-mode-projections-clinton-323-ev-51-di-senate-seats-gop-house/. Schiffer, Adam J. 2000. “I’m Not That Liberal: Explaining Conservative Democratic Identification.” Political Behavior 22(4): 293-310. http://dx.doi.org/10.1023/A:1010626029987. Sunstein, Cass R. 2001. Republic.com. Princeton: NJ: Princeton University Press. The New York Times. 2016. “Who Will Be President?.” https://www.nytimes.com/interactive/2016/upshot/presidential-polls-forecast.html. U.S. Census Bureau. 2017. “State Population Totals Tables: 2010-2016.” https://www.census.gov/data/tables/2016/demo/popest/state-total.html. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67536 | - |
dc.description.abstract | 利用 Facebook 去識別化的公開資料,我們提出一個廣泛的框架,將美國不同類型的政治參與者 (如政治人物、新聞媒體、利益團體、與社會大眾等) 全部定位在共同的意識形態光譜上。透過辨認潛藏意識形態資訊的粉絲專頁,並選擇可能提供訊息的使用者,我們提供了新的關於政治人物意識形態與媒體偏斜的估計,這些估計也重製了傳統衡量的結果。此外,對一般大眾意識形態的估計結果也較符合全國與各州實際上的分配。與過去研究不同的是:我們的方法並不侷限在政治生活的特定層面;產生的大眾意識形態分配較為平滑合理;估計能隨著時間改變;並且可以依據不同議題做進一步分析。這使得我們的方法能延伸,並且更具使用價值。我們也討論了一些因為這個衡量方式所產生的未來研究方向,例如預測選舉結果,以及衡量在社群媒體上輿情隔離的程度。 | zh_TW |
dc.description.abstract | We present a general framework to place different political actors including politicians, news outlets, interest groups, and the mass public all on the same ideological spectrum, using only de-identified, publicly available Facebook data. By specifying a potential ideological universe of fan pages and selecting informative users, we are able to give some new evidence and reproduce conventional measures regarding political ideal points and media slants, and also replicate ideology distribution of citizens both at national and at state levels. Unlike previous works, our procedure does not constrain to a specific aspect of political life, can generate a reasonably smooth mass ideology distribution, is time-variant, and is also topic-decomposable. This makes it extensible and useful for future research. Several new avenues of research made possible by our estimates such as election forecasting and measuring opinion segregation on social media are also discussed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:36:33Z (GMT). No. of bitstreams: 1 ntu-106-R03323070-1.pdf: 1616665 bytes, checksum: caf76407e897a23acb1460ec231e45da (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 1 Introduction ........................................................................................... 1
2 Literature Review ................................................................................. 4 2.1 Measuring Ideology of the General Public ...................................... 4 2.2 Ideal Point of Political Elites ........................................................... 4 2.3 Understanding Media Bias ............................................................. 5 2.4 Ideal Point Estimation Using Social Media ..................................... 6 3 Model and Method ................................................................................ 7 3.1 Facebook Post Endorsement Model .............................................. 7 3.2 Identification .................................................................................. 8 3.3 Traditional Estimation Method ....................................................... 8 3.4 Estimation Using Dimension Reduction ......................................... 9 4 Data Processing and Results .............................................................. 10 4.1 Specify the Ideological Universe .................................................. 10 4.2 Select Potential US Users ............................................................ 11 4.3 Build Matrices .............................................................................. 12 4.4 Conduct Principal Component Analysis ....................................... 14 4.5 Results of Fan Pages ................................................................... 15 4.6 Results of Users ........................................................................... 16 5 Validations .......................................................................................... 19 5.1 Methodological Issues .................................................................. 19 5.2 Political Ideal Points ..................................................................... 19 5.3 Media Slants ................................................................................ 21 5.4 User Ideologies ............................................................................ 23 5.5 State Report Cards ...................................................................... 24 6 Applications and Discussions ............................................................. 27 6.1 Time Dimension: Polarization and Spatial Voting ......................... 27 6.2 Post Content Dimension: Echo Chambers ................................... 29 6.3 Forecasting Presidential Election ................................................ 30 6.4 Ideological Segregation at Media Level ....................................... 32 6.5 Opinion Segregation at Issue Level ............................................. 33 6.6 Potential Causes of Segregation ................................................. 34 6.7 Promise and Pitfalls of Social Media ........................................... 38 References ............................................................................................ 39 A Further Results ................................................................................... 42 B Further Validations .............................................................................. 47 | |
dc.language.iso | en | |
dc.title | Facebook 作為社會劫盜地圖:意識形態估計、媒體偏斜、與輿情隔離 | zh_TW |
dc.title | Ideology Estimation, Media Slant, and Opinion Segregation: Facebook as a Social Barometer | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 江淳芳(Chun-Fang Chiang) | |
dc.contributor.oralexamcommittee | 張傳賢(Alex Chuan-Hsien Chang),謝吉隆(Ji-Lung Hsieh) | |
dc.subject.keyword | 意識形態估計,媒體偏斜,輿情隔離,社群媒體, | zh_TW |
dc.subject.keyword | ideal point estimation,media slant,segregation,social media, | en |
dc.relation.page | 50 | |
dc.identifier.doi | 10.6342/NTU201702253 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-01 | |
dc.contributor.author-college | 社會科學院 | zh_TW |
dc.contributor.author-dept | 經濟學研究所 | zh_TW |
Appears in Collections: | 經濟學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 1.58 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.