Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝銘鈞
dc.contributor.authorTing-Yu Tuen
dc.contributor.author杜庭妤zh_TW
dc.date.accessioned2021-06-17T01:36:06Z-
dc.date.available2022-08-14
dc.date.copyright2017-08-14
dc.date.issued2017
dc.date.submitted2017-07-31
dc.identifier.citation1. Fang, J., H. Nakamura, and H. Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 2011. 63(3): p. 136-151.
2. Maeda, H., et al., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 2000. 65(1): p. 271-284.
3. Bae, Y., et al., Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Molecular BioSystems, 2005. 1(3): p. 242-250.
4. Xu, H., F. Meng, and Z. Zhong, Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. Journal of Materials Chemistry, 2009. 19(24): p. 4183-4190.
5. Kim, H.J., et al., Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite. Advanced Materials, 2006. 18(23): p. 3083-3088.
6. Huang, H.-Y., et al., SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. Journal of Controlled Release, 2013. 172(1): p. 118-127.
7. Oliveira, H., et al., Magnetic field triggered drug release from polymersomes for cancer therapeutics. Journal of Controlled Release, 2013. 169(3): p. 165-170.
8. Chen, Y.-W., et al., NIR-Triggered Synergic Photo-chemothermal Therapy Delivered by Reduced Graphene Oxide/Carbon/Mesoporous Silica Nanocookies. Advanced Functional Materials, 2014. 24(4): p. 451-459.
9. Weissleder, R., A clearer vision for in vivo imaging. Nature Biotechnology, 2001. 19(4): p. 316-317.
10. Fomina, N., J. Sankaranarayanan, and A. Almutairi, Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev, 2012. 64(11): p. 1005-20.
11. Huang, X.H., et al., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006. 128(6): p. 2115-2120.
12. Kam, N.W.S., et al., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(33): p. 11600-11605.
13. Peng, C.L., et al., Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano, 2011. 5(7): p. 5594-607.
14. Shih, Y.H., et al., EGFR-targeted micelles containing near-infrared dye for enhanced photothermal therapy in colorectal cancer. J Control Release, 2017. 258: p. 196-207.
15. Sheng, Z., et al., Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials, 2013. 34(21): p. 5236-43.
16. Liang, C., et al., Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater, 2014. 26(32): p. 5646-52.
17. Chen, H., et al., Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules. Nanoscale, 2015. 7(19): p. 8884-97.
18. Ma, Y., et al., Gold Nanoshell Nanomicelles for Potential Magnetic Resonance Imaging, Light-Triggered Drug Release, and Photothermal Therapy. Advanced Functional Materials, 2013. 23(7): p. 815-822.
19. Huang, X., S. Neretina, and M.A. El-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater, 2009. 21(48): p. 4880-4910.
20. Chen, H.J., et al., Gold nanorods and their plasmonic properties. Chemical Society Reviews, 2013. 42(7): p. 2679-2724.
21. Wang, B., et al., Gold Nanorods as a Contrast Agent for Doppler Optical Coherence Tomography. Plos One, 2014. 9(3).
22. Jokerst, J.V., et al., Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano, 2012. 6(7): p. 5920-30.
23. Peters, T., Serum Albumin. Advances in Protein Chemistry, 1985. 37: p. 161-245.
24. Neumann, E., et al., Native albumin for targeted drug delivery. Expert Opin Drug Deliv, 2010. 7(8): p. 915-25.
25. Fiehn, C., et al., Methotrexate (MTX) and albumin coupled with MTX (MTX-HSA) suppress synovial fibroblast invasion and cartilage degradation in vivo. Annals of the Rheumatic Diseases, 2004. 63(7): p. 884-886.
26. Cortes, J. and C. Saura, Nanoparticle albumin-bound (nab™)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. European Journal of Cancer Supplements, 2010. 8(1): p. 1-10.
27. Kratz, F., Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 2008. 132(3): p. 171-183.
28. Sleep, D., Albumin and its application in drug delivery. Expert Opinion on Drug Delivery, 2015. 12(5): p. 793-812.
29. Alkilany, A.M., et al., Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small, 2009. 5(6): p. 701-8.
30. Lau, I.P., et al., In vitro effect of CTAB- and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes. Nanotoxicology, 2012. 6: p. 847-56.
31. Takahashi, H., et al., Modification of Gold Nanorods Using Phosphatidylcholine to Reduce Cytotoxicity. Langmuir, 2006. 22(1): p. 2-5.
32. Mariam, J., S. Sivakami, and P.M. Dongre, Albumin corona on nanoparticles – a strategic approach in drug delivery. Drug Delivery, 2016. 23(8): p. 2668-2676.
33. Quan, Q., et al., HSA Coated Iron Oxide Nanoparticles as Drug Delivery Vehicles for Cancer Therapy. Molecular Pharmaceutics, 2011. 8(5): p. 1669-1676.
34. Xie, J., et al., PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010. 31(11): p. 3016-22.
35. Takemura, G. and H. Fujiwara, Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis, 2007. 49(5): p. 330-52.
36. Oliveira, M.S., et al., Doxorubicin Cardiotoxicity and Cardiac Function Improvement After Stem Cell Therapy Diagnosed by Strain Echocardiography. J Cancer Sci Ther, 2013. 5(2): p. 52-57.
37. Dong, X., et al., Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res, 2009. 69(9): p. 3918-26.
38. Kievit, F.M., et al., Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release, 2011. 152(1): p. 76-83.
39. Lee, H., et al., Entrapped doxorubicin nanoparticles for the treatment of metastatic anoikis-resistant cancer cells. Cancer Lett, 2013. 332(1): p. 110-9.
40. Wang, B.K., et al., Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials, 2016. 78: p. 27-39.
41. Rylander, M.N., et al., Heat shock protein expression and injury optimization for laser therapy design. Lasers in Surgery and Medicine, 2007. 39(9): p. 731-746.
42. Lale, S.V., et al., Folic Acid and Trastuzumab Functionalized Redox Responsive Polymersomes for Intracellular Doxorubicin Delivery in Breast Cancer. Biomacromolecules, 2015. 16(6): p. 1736-52.
43. Tong, R. and J.J. Cheng, Anticancer polymeric nanomedicines. Polymer Reviews, 2007. 47(3): p. 345-381.
44. Choi, J.W., et al., pH-sensitive oncolytic adenovirus hybrid targeting acidic tumor microenvironment and angiogenesis. J Control Release, 2015. 205: p. 134-43.
45. Xing, R.J., et al., Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Research, 2013. 6(1): p. 1-9.
46. Li, Z.L., et al., Human-Serum-Albumin-Coated Prussian Blue Nanoparticles as pH-/Thermotriggered Drug-Delivery Vehicles for Cancer Thermochemotherapy. Particle & Particle Systems Characterization, 2016. 33(1): p. 53-62.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67526-
dc.description.abstract藥物遞送系統結合多模式合併的治療方式應用在腫瘤診斷與治療相關領域相當具有前景。此篇研究開發出一種新型的藥物遞送載體(GNR/PSS/HSA NPs),透過雷射穿透式電子顯微鏡、表面電性與傅里葉轉換紅外光譜進行聚苯乙烯磺酸與人類血清白蛋白之表面修飾的鑑定,此外,化療藥物Doxorubicin (DOX)成功透過靜電作用力與疏水作用力搭載上經修飾過之奈米金棒,且此藥物遞送系統(DOX@GNR/PSS/HSA NPs)展現高度的生物相容性與良好的穩定性,而其在近紅外光波段具有強吸收的特性,能夠高效率地將光能轉換成熱能,應用在光熱治療上。另一方面,此載體系統透過兩種藥物觸發釋放模式(蛋白酶作用與近紅外光照射)來傳遞化療藥物,使得在腫瘤處有較多的藥物累積,進而達到顯著的化療效果。更重要的是,從體外試驗與體內試驗的實驗結果都可觀察到,相較於單獨給予化療或光熱治療,以此篇研究開發的藥物遞送載體(DOX@GNR/PSS/HSA NPs)同時進行化療合併光熱治療能夠達到最佳的腫瘤抑制效果。以上的結果表明DOX@GNR/PSS/HSA NPs具有相當大的潛力應用在腫瘤治療。zh_TW
dc.description.abstractDrug delivery systems combined multimodal therapy strategies are very promising in cancer theranostic applications. In this work, a new drug-delivery vehicles based on human serum albumin (HSA)-coated gold nanorods(GNR/PSS/HSA NPs) is developed. The success of coating was verified by transmission electron microscopy (TEM), zeta potential and fourier transform infrared spectroscopy (FTIR). Furthermore, it is demonstrated that doxorubicin (DOX) is successfully loaded among multilayered gold nanorods by the electrostatic and hydrophobic force, and DOX@GNR/PSS/HSA NPs are highly biocompatible and stable in various physiological solutions. The NPs possess strong absorbance in near-infrared (NIR) region, and high photothermal conversion efficiency for outstanding photothermal therapy applications. Moreover, a bimodal drug release triggered by proteinase or NIR irradiation has been revealed, resulting in a significant chemotherapeutic effect in tumor sites because of the preferential drug accumulation and triggered release. Importantly, the in vitro and in vivo experiments demonstrated that DOX@GNR/PSS/HSA NPs, which combined photothermal and chemotherapy for tumor therapy, revealing a remarkably superior synergistic anticancer effect over either monotherapy. All these results suggested a considerable potential of DOX@GNR/PSS/HSA NPs nano-platform for antitumor therapy.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:36:06Z (GMT). No. of bitstreams: 1
ntu-106-R04548030-1.pdf: 1815691 bytes, checksum: 2bb88a4ad38383ad4d5a9091eb8ac156 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 .................................................................................................................................. ii
中文摘要 ......................................................................................................................... iii
Abstract ............................................................................................................................ iv
Contents ........................................................................................................................... vi
List of Schemes ............................................................................................................... ix
List of Tables .................................................................................................................... x
List of Figures .................................................................................................................. xi
Chapter 1 Introduction ...................................................................................................... 1
1.1 Chemotherapy and its limitation ......................................................................... 1
1.2 Trigger-controlled drug release system .............................................................. 2
1.3 Photothermal effect and Gold nanorod ............................................................... 3
1.4 Human serum albumin ....................................................................................... 4
1.5 Aim ..................................................................................................................... 5
Chapter 2 Materials and Methods ..................................................................................... 7
2.1 Materials ............................................................................................................. 7
2.2 Preparation of GNR/PSS/HSA NPs and DOX@GNR/PSS/HSA NPs ............... 7
2.3 Characterization of GNR/PSS/HSA NPs and DOX@GNR/PSS/HSA NPs ....... 8
2.4 In vitro photothermal properties ......................................................................... 9
2.5 In vitro drug release profile ................................................................................ 9
2.6 Cell culture ....................................................................................................... 10
2.7 Cellular uptake ................................................................................................... 11
2.8 In vitro cytotoxicity of photothermal therapy and chemotherapy ..................... 11
2.9 Animal and tumor model .................................................................................. 12
2.10 In vivo temperature measurement and photothermal imaging ....................... 13
2.11 In vivo antitumor efficacy............................................................................... 13
2.12 Statistical analysis .......................................................................................... 14
Chapter 3 Result and Discussion .................................................................................... 15
3.1 Preparation and characterization of GNR/PSS/HSA NPs and
DOX@GNR/PSS/HSA NPs ................................................................................... 15
3.2 In vitro photothermal properties ....................................................................... 17
3.3 In vitro drug release .......................................................................................... 18
3.4 Cellular uptake .................................................................................................. 20
3.5 In vitro chemo-, photothermal, and photothermal-chemotherapy treatments .. 21
3.6 In vivo photothermal effect .............................................................................. 23
3.7 In vivo antitumor effect .................................................................................... 23
Chapter 4 Conclusion ..................................................................................................... 25
References ...................................................................................................................... 26
Scheme ........................................................................................................................... 33
Tables .............................................................................................................................. 35
Figures ............................................................................................................................ 36
dc.language.isoen
dc.subject金奈米棒zh_TW
dc.subject人類血清白蛋白zh_TW
dc.subject化學治療zh_TW
dc.subject光熱治療zh_TW
dc.subject控制藥物釋放zh_TW
dc.subjecthuman serum albumin (HSA)en
dc.subjectchemotherapyen
dc.subjectphotothermal therapy (PTT)en
dc.subjectcontrol drug releaseen
dc.subjectgold nanorod (GNR)en
dc.title人類白蛋白及聚苯乙烯磺酸修飾之金奈米棒作為熱觸發式藥物遞送載體應用於光熱治療合併化療之研究zh_TW
dc.titleHSA/PSS/Gold Nanorods as Thermotriggered Drug Delivery Vehicles for Combined Photothermal and Chemotherapyen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊台鴻,林文澧,駱俊良
dc.subject.keyword金奈米棒,人類血清白蛋白,化學治療,光熱治療,控制藥物釋放,zh_TW
dc.subject.keywordgold nanorod (GNR),human serum albumin (HSA),chemotherapy,photothermal therapy (PTT),control drug release,en
dc.relation.page48
dc.identifier.doi10.6342/NTU201702318
dc.rights.note有償授權
dc.date.accepted2017-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved