請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67508完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧中仁(Chung-Jen Lu) | |
| dc.contributor.author | Wei-Cheng Lai | en |
| dc.contributor.author | 賴韋誠 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:35:18Z | - |
| dc.date.available | 2019-08-04 | |
| dc.date.copyright | 2017-08-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-02 | |
| dc.identifier.citation | [1] Kennedy, C. C., 1947, 'Use of vectors in vibration measurement and analysis,' Journal of the Aeronautical Sciences, 14, pp. 603-625.
[2] Raney, J., 1968, 'Identification of complex structures using near-resonance testing,' Shock and Vibration Bulletin, 38, pp. 23-31. [3] Ewins, D. J., 1984, Modal testing: theory and practice, Research studies press Letchworth, Hertfordshire, England [4] Brown, D., Allemang, R., Zimmerman, R., and Mergeay, M., 1979, 'Parameter estimation techniques for modal analysis,' SAE Technical paper, 790221, pp. 1-19. [5] Brigham, E. O., and Morrow, R. E., 1967, 'The fast Fourier transform,' IEEE Spectrum, 4(12), pp. 63-70. [6] Richardson, M. H., and Formenti, D. L., 1982, 'Parameter estimation from frequency response measurements using rational fraction polynomials,' Proceedings of the First International Modal Analysis Conference, pp. 167-182. [7] Kelly, L. G., 1967, Handbook of numerical methods and applications, Addison-Wesley, Chap. 5. [8] Richardson, M., and Potter, R., 1974, 'Identification of the modal properties of an elastic structure from measured transfer function data,' Proc. 20th ISA, Albuquerque, NM, pp. 239-246. [9] Richardson, M. H., and Formenti, D. L., 1985, 'Global curve fitting of frequency response measurements using the rational fraction polynomial method,' Proceedings of the Third International Modal Analysis Conference, pp. 390-397. [10] Richardson, M. H., 1986, 'Global frequency & damping estimates from frequency response measurements,' Proceedings of the Fourth International Modal Analysis Conference, pp. 465-470. [11] Fladung, W., and Brown, D. L., 1994, 'Multiple reference impact testing,' MS Thesis, University of Cincinnati. [12] Shih, C., Tsuei, Y., Allemang, R., and Brown, D., 1988, 'Complex mode indication function and its applications to spatial domain parameter estimation,' Mechanical systems and signal processing, 2(4), pp. 367-377. [13] Allemang, R., and Brown, D., 2006, 'A complete review of the complex mode indicator function (CMIF) with applications,' Proceedings of ISMA Conference, pp. 3209-3246. [14] Holland, J. H., 1992, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press, Cambridge. [15] Haupt, R. L., and Haupt, S. E., 2004, Practical genetic algorithms, John Wiley & Sons. [16] Eberhart, R., and Kennedy, J., 1995, 'A new optimizer using particle swarm theory,' Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, pp. 39-44. [17] Dorigo, M., and Gambardella, L. M., 1997, 'Ant colony system: a cooperative learning approach to the traveling salesman problem,' IEEE Transactions on evolutionary computation, 1(1), pp. 53-66. [18] 劉宏仁, 1997, '遺傳演算法在模態分析上之應用,' 國立台灣大學機械工程學研究所碩士論文. [19] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 2002, 'A fast and elitist multiobjective genetic algorithm: NSGA-II,' IEEE transactions on evolutionary computation, 6(2), pp. 182-197. [20] Schaffer, J. D., 1985, 'Some experiments in machine learning using vector evaluated genetic algorithms(Doctoral dissertation),' Vanderbilt Univ., Nashville, TN (USA). [21] Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley. [22] Srinivas, N., and Deb, K., 1994, 'Muiltiobjective optimization using nondominated sorting in genetic algorithms,' Evolutionary computation, 2(3), pp. 221-248. [23] Zitzler, E., Deb, K., and Thiele, L., 2000, 'Comparison of multiobjective evolutionary algorithms: Empirical results,' Evolutionary computation, 8(2), pp. 173-195. [24] Lu, H., and Yen, G. G., 2003, 'Rank-density-based multiobjective genetic algorithm and benchmark test function study,' IEEE Transactions on Evolutionary Computation, 7(4), pp. 325-343. [25] Zitzler, E., Laumanns, M., and Thiele, L., 2001, 'SPEA2: Improving the strength Pareto evolutionary algorithm,' Citeseer, pp. 1–21. [26] Knowles, J. D., and Corne, D. W., 2000, 'Approximating the nondominated front using the Pareto archived evolution strategy,' Evolutionary computation, 8(2), pp. 149-172. [27] Tan, K. C., Lee, T. H., and Khor, E. F., 2001, 'Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization,' IEEE Transactions on Evolutionary Computation, 5(6), pp. 565-588. [28] 王明正, 1999, '多項式分式法在模態參數估測上的應用,' 國立台灣大學機械工程學研究所碩士論文. [29] 江倚瑄, 2016, '應用多目標基因演算法於測力計拓樸最佳化,' 國立台灣大學機械工程學研究所碩士論文. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67508 | - |
| dc.description.abstract | 模態測試是取得機械系統的振動參數的必備工具,然而現有的商業模態測試軟體有價格昂貴和不易修改的缺點。本研究的動機是以相形低廉且高能強大的套裝軟體MATLAB為計算環境,開發模態測試軟體,以便於針對不同需求客製化調整。模態測試的核心是曲線嵌合,本研究比較多項式分式法以及多目標基因演算法兩種方式,在模態測試曲線嵌合及參數擷取上的效能差異。
多項式分式法利用頻率函數為分式的特性,應用最小平方差法求取分子、分母多項式的係數。多項分式法依照分別處理各個或是同時處理所有的頻率響應函數可分為局部與全域曲線嵌合。 多目標基因演算法則應用NSGA-II(nondominated sorting genetic algorithm-II)的優點為採用非受控排序法(nondominated sorting)及群聚距離(crowding-distance),在族群中選出較具優勢的個體,以維持基因多樣性,避免收斂至局部最佳值,同時能有較高的計算效能。 本論文開發了程式來實現這兩種方法。針對有節點、自然頻率分布接近、高阻尼比、有重根、受頻寬外模態影響等,會造成振動參數擷取困難的情形,比較這兩較方法的異同,並提出改善的方向。 | zh_TW |
| dc.description.abstract | Modal testing is essential for the identification of important dynamical parameters of a mechanical system. However, commercially available modal testing packages are expensive and nonflexible. This thesis aims to employ the popular and powerful package MATLAB as the environment to develop a modal testing program that can be customized to meet the user’s needs. The efficiency of a modal testing program highly depends on the curve fitting algorithm used. Two different curve fitting algorithms, the rational fraction polynomials (RFP) method and the multi-objective genetic algorithms, are adopted. The effectiveness of these two methods on parameter identification is compared.
The RFP method is based on the fact that the frequency response function (FRF) of a linear time-invariant system is a rational function in frequency. The lease squares method is used to determine the coefficients of the numerator and denominator polynomials. The RFP method can be classified into two different types, called the local curve fitting and global curve fitting, according to whether the FRFs are processed sequentially or simultaneously. The non-dominated sorting genetic algorithm-II (NSGA-II) is used to realize the multi-objective optimization. This algorithm employs the non-dominated sorting and crowding distance to select elite individuals for the next generation. In this case, the genetic diversity is maintained, early convergence to a local extrema is avoided, and high computational efficiency is achieved. In this thesis, we develop programs based on RFP and NSGAII. Some benchmark tests, for example, modes with nodes, high damping ratios, and double roots, which may present difficulties for parameter identification are used to evaluate these two methods. Possible guidelines to improve these two methods are proposed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:35:18Z (GMT). No. of bitstreams: 1 ntu-106-R04522518-1.pdf: 4378331 bytes, checksum: 35e16c530b492d0a19a21460e60afa60 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 2 第二章 理論與方法 5 2.1 模態測試理論 5 2.2 多項式分式法 7 2.2.1 Forsythe法 9 2.2.2 頻率響應函數的曲線嵌合 14 2.2.3 動態參數擷取 20 2.3 多項式分式法曲線嵌合的方式 22 2.3.1 局部曲線嵌合 22 2.3.2 全域曲線嵌合 22 2.4 多目標基因演算法NSGA-II 27 2.4.1 非受控排序法(nondominated sorting) 28 2.4.2 群聚距離(crowding-distance) 30 2.4.3 NSGA-II目標函數及初始參數設定與曲線嵌合方式 32 2.4.4 親代的選取及基因的交叉與突變 33 2.5 多參考點 38 2.5.1 Complex mode indicator function 38 2.5.2 CMIF曲線的Crossover效應 40 2.5.3 重根下模態的分解 42 第三章 結果與討論 44 3.1 曲線嵌合程序說明 44 3.2 頻率響應資訊的特殊情形 51 3.2.1 節點 51 3.2.2 自然頻率分布接近 60 3.2.3 高阻尼值 65 3.2.4 重根 75 3.3 連續結構-薄膜 86 3.3.1 薄膜的頻率響應函數推導 87 3.3.2 多項式分式法的高低頻補償 89 3.3.3 多目標基因演算法的高低頻補償 96 3.3.4 薄膜-重根、節點及補償高低頻模態 104 第四章 結論 119 參考文獻 122 附錄 125 | |
| dc.language.iso | zh-TW | |
| dc.subject | 模態測試 | zh_TW |
| dc.subject | 多項式分式法 | zh_TW |
| dc.subject | 全域曲線嵌合 | zh_TW |
| dc.subject | 多目標基因演算法 | zh_TW |
| dc.subject | NSGA-II | zh_TW |
| dc.subject | modal testing | en |
| dc.subject | rational fraction polynomial | en |
| dc.subject | global curve fitting | en |
| dc.subject | multi-objective genetic algorithm | en |
| dc.subject | NSGA-II | en |
| dc.title | 多項式分式法與基因演算法在模態分析的應用 | zh_TW |
| dc.title | Application of Rational Fraction Polynomials and Multi-objective Genetic Algorithm to Modal Parameter Estimation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉導淳(Dao-Chun Liu),蘇春?(Chun-Hsi Su) | |
| dc.subject.keyword | 模態測試,多項式分式法,全域曲線嵌合,多目標基因演算法,NSGA-II, | zh_TW |
| dc.subject.keyword | modal testing,rational fraction polynomial,global curve fitting,multi-objective genetic algorithm,NSGA-II, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU201702107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
