Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67499
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江宏仁(Hong-Ren Jiang)
dc.contributor.authorChia-Hsien Linen
dc.contributor.author林佳憲zh_TW
dc.date.accessioned2021-06-17T01:34:54Z-
dc.date.available2020-08-03
dc.date.copyright2017-08-03
dc.date.issued2017
dc.date.submitted2017-08-01
dc.identifier.citation1 Hen-Wei Huang, Mahmut Selman Sakar, Andrew J Petruska, Salvador Pané, and Bradley J Nelson, Nature Communications 7 (2016).
2 Sumit Gangwal, Olivier J Cayre, Martin Z Bazant, and Orlin D Velev, Physical Review Letters 100 (5), 058302 (2008).
3 H Lee, AM Purdon, and RM Westervelt, Applied Physics Letters 85 (6), 1063 (2004).
4 David W Inglis, Robert Riehn, RH Austin, and JC Sturm, Applied Physics Letters 85 (21), 5093 (2004).
5 Jin-Woo Choi, Kwang W Oh, Jennifer H Thomas, William R Heineman, H Brian Halsall, Joseph H Nevin, Arthur J Helmicki, H Thurman Henderson, and Chong H Ahn, Lab on a Chip 2 (1), 27 (2002).
6 C Casagrande, P Fabre, E Raphael, and M Veyssié, EPL (Europhysics Letters) 9 (3), 251 (1989).
7 Pierre‐Gilles de Gennes, Angewandte Chemie International Edition in English 31 (7), 842 (1992).
8 Yi Yi, Lucero Sanchez, Yuan Gao, and Yan Yu, Analyst 141 (12), 3526 (2016).
9 Jennifer L Tang, Kipp Schoenwald, Daniel Potter, David White, and Todd Sulchek, Langmuir 28 (26), 10033 (2012).
10 Lucero Sanchez, Paul Patton, Stephen M Anthony, Yi Yi, and Yan Yu, Soft matter 11 (26), 5346 (2015).
11 W Ramsden, Proceedings of the royal Society of London 72, 156 (1903).
12 Liang Hong, Shan Jiang, and Steve Granick, Langmuir 22 (23), 9495 (2006).
13 Zhihong Nie, Wei Li, Minseok Seo, Shengqing Xu, and Eugenia Kumacheva, Journal of the American Chemical Society 128 (29), 9408 (2006).
14 Kyung-Ho Roh, David C Martin, and Joerg Lahann, Nature materials 4 (10), 759 (2005).
15 Todd M Squires and Martin Z Bazant, Journal of Fluid Mechanics 560, 65 (2006).
16 Liz Y Wu, Benjamin M Ross, SoonGweon Hong, and Luke P Lee, Small 6 (4), 503 (2010).
17 David C Grahame, Chemical reviews 41 (3), 441 (1947).
18 William Bailey Russel, Dudley Albert Saville, and William Raymond Schowalter, Colloidal dispersions. (Cambridge university press, 1989).
19 RJ Hunter, Foundations of colloid science 1, 72 (1989).
20 Andrei S Dukhin and Philip J Goetz, ACS Publications, (2004).
21 Dorian Hanaor, Marco Michelazzi, Cristina Leonelli, and Charles C Sorrell, Journal of the European Ceramic Society 32 (1), 235 (2012).
22 Brian J Kirby, Micro-and nanoscale fluid mechanics: transport in microfluidic devices. (Cambridge University Press, 2010).
23 Thomas Byron Jones and Thomas B Jones, Electromechanics of particles. (Cambridge University Press, 2005).
24 Diego Morganti, (University of Southampton, 2012).
25 P Sajeesh and Ashis Kumar Sen, Microfluidics and nanofluidics 17 (1), 1 (2014).
26 Todd M Squires and Martin Z Bazant, Journal of Fluid Mechanics 509, 217 (2004).
27 Martin Z Bazant and Todd M Squires, Physical Review Letters 92 (6), 066101 (2004).
28 Marian Smoluchowski, Pisma Mariana Smoluchowskiego 1 (1), 403 (1924).
29 Martin Z Bazant, Katsuyo Thornton, and Armand Ajdari, Physical Review E 70 (2), 021506 (2004).
30 NI Gamayunov, VA Murtsovkin, and AS Dukhin, Colloid J. USSR (Engl. Transl.);(United States) 48 (2) (1986).
31 Howard A Stone and Aravinthan DT Samuel, Physical Review Letters 77 (19), 4102 (1996).
32 Toru Okubo, Shigeki Chujo, Shinya Maenosono, and Yukio Yamaguchi, Journal of Nanoparticle Research 5 (1), 111 (2003).
33 Peter A Kralchevsky and Kuniaki Nagayama, Langmuir 10 (1), 23 (1994).
34 Eiki Adachi, Antony S Dimitrov, and Kuniaki Nagayama, Langmuir 11 (4), 1057 (1995).
35 TV Choudhary and DW Goodman, Topics in Catalysis 21 (1), 25 (2002).
36 Masatake Haruta, Catalysis today 36 (1), 153 (1997).
37 Shuwen Zeng, Ken-Tye Yong, Indrajit Roy, Xuan-Quyen Dinh, Xia Yu, and Feng Luan, Plasmonics 6 (3), 491 (2011).
38 Pietro Tierno, Rosa Albalat, and Francesc Sagués, Small 6 (16), 1749 (2010).
39 Nicolas G Green, Antonio Ramos, Antonio Gonzalez, Hywel Morgan, and Antonio Castellanos, Physical Review E 66 (2), 026305 (2002).
40 Sergey S Shevkoplyas, Adam C Siegel, Robert M Westervelt, Mara G Prentiss, and George M Whitesides, Lab on a Chip 7 (10), 1294 (2007).
41 Bernard Dennis Cullity and Chad D Graham, Introduction to magnetic materials. (John Wiley & Sons, 2011).
42 Huanxin Wu, Ming Han, and Erik Luijten, Soft Matter 12 (47), 9575 (2016).
43 Vera Lockett, Mike Horne, Rossen Sedev, Theo Rodopoulos, and John Ralston, Physical Chemistry Chemical Physics 12 (39), 12499 (2010).
44 Allen J Bard and Larry R Faulkner, Electrochemical Methods 2 (2001).
45 Andrew I Campbell and Stephen J Ebbens, Langmuir 29 (46), 14066 (2013).
46 Antonio Ramos, Pablo García-Sánchez, and Hywel Morgan, Current Opinion in Colloid & Interface Science 24, 79 (2016).
47 Aidan Brown and Wilson Poon, Soft matter 10 (22), 4016 (2014).
48 Sumit Gangwal, Olivier J Cayre, and Orlin D Velev, Langmuir 24 (23), 13312 (2008).
49 Ehud Yariv, Physics of Fluids 17 (5), 051702 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67499-
dc.description.abstract近幾年,科學家應用設計膠體粒子的表面性質或施加電場來控制 Janus 的移動或是組裝,進而利用這些科技來完成如藥物輸送或是自組裝等目的。在均勻的低頻交流電場下,可極化表面周圍誘導出非線性的電荷,並被電場所驅動形成感應電荷電滲流,而感應電荷電滲流帶動粒子移動的行為被稱作感應電荷電泳。然而,目前並無直接的實驗數據探討非對稱粒子的感應電荷電滲流與感應電荷電泳對於電場方向的依賴性。本實驗使用粒徑為 3 微米之超順磁粒子半邊鍍有黃金形成 Janus 粒子,使其具有三種不同的物理性質,通過施加一微弱磁場操作粒子內部磁矩的轉向,實驗測量不同塗層厚度的 Janus粒子在不同取向下的極化反應行為。
在金屬塗層低於 30 奈米之薄塗層 Janus 粒子的情況下,其感應電荷電泳方向主要垂直於電場,並保持聚苯乙烯端在前方運動;接著在磁場中測量不同取向下 Janus粒子的感應電荷電泳速度和感應電荷電滲流的流動模式,實驗結果觀察到速度明顯地有取向依賴關係,垂直於電場軸線時速度有最大值,隨著運動漸漸轉為平行於電場軸線運動時,速度會慢慢降低。對於金屬塗層高於 45 奈米之厚塗層 Janus 粒子,其感應電荷電泳主要平行電場,並保持聚苯乙烯在前方運動,並且在不同取向下觀察到速度與薄塗層呈現截然相反的取向依賴性。因此我們認為 Janus 粒子的金屬塗層厚度與顆粒感應電荷電泳的取向是由感應電偶極強度所主導。另外,在高頻交流電場下,電雙層沒有足夠的時間進行充放電行為,實驗觀察到電泳運動反轉的現象,並保持金屬端在前方移動,我們認為在金屬電介質界面處會產生表面電場梯度,吸引非均勻的離子進而引起一壓力差使粒子移動。最後,本研究創新設計旋轉磁場和調整交流電場,提供了一種可編程粒子移動路徑的技術,達到在微流體中自由操作粒子的目的。
zh_TW
dc.description.abstractRecently, scientists reported that the flows resulting from the action of an applied electric field on its own induced charges around a polarizable structure as “induced-charged electro-osmosis” (ICEO), which is capable of driving Janus particle, whose surfaces have two or more distinct properties, under the electric fields by “induced-charge electrophoresis” (ICEP). However, the directly experimental data of particle velocity for ICEP and flow velocity for ICEO in orientation-dependency with respect to electric fields are seldom investigated by scientists. We achieve that the magnetic moment of superparamagnetic Janus particle can be manipulated by external magnetic fields, the polarization effect of Janus particles with different coating thickness experimentally measured in different orientation under the electric field.
In the case of Janus particles with thin metallic coating, the ICEP motion of particle mainly moves perpendicular to the electric field without magnetic. The ICEP velocity and ICEO flow of Janus particle in different directions are measured in magnetic field and clear orientation dependent velocities are observed. However, for a thick metallic coating, the ICEP motion is dramatically parallel to the electric field without magnetic field and different orientation-dependent velocities are observed. We proposed that the strength of induced dipole of a Janus particle, depending on the thickness of the metallic coating and orientation of a particle, dominates the behavior of ICEP. Finally, this study provide a programmable method to control the particle by a rotating magnetic and frequency adjustment.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:34:54Z (GMT). No. of bitstreams: 1
ntu-106-R04543074-1.pdf: 7080394 bytes, checksum: a74e698cdf91a60273311e5dcdfe4ee4 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 磁性膠體粒子 2
1.3 人造主動粒子 3
1.3.1 Janus粒子的製備 4
1.3.2 Janus粒子的研究應用 7
1.4 膠體粒子之電動力學 9
1.4.1 電雙層 9
1.4.2 德拜長度 10
1.4.3 界達電位 11
1.4.4 介電泳理論 12
1.4.5 電滲流理論 15
1.4.6 感應電荷電滲流理論 17
1.4.7 非對稱圓柱之感應電荷電滲流模型 22
1.4.8 非對稱球體之感應電荷電泳模型 26
1.5 研究動機 29
第二章 儀器設備 30
2.1 儀器設備 30
2.1.1 濺鍍機 30
2.1.2 原子力顯微鏡 31
2.1.3 高斯計 31
2.1.4 其他儀器 33
第三章 實驗步驟 34
3.1 製作Janus粒子 34
3.1.1 單層磁性聚苯乙烯粒子製作 34
3.1.2 黃金濺鍍與粒子保存 36
3.1.3 製作橢圓形Janus粒子 37
3.2 粒子運動觀察與分析 39
3.2.1 觀察腔體與可控制磁場設計 39
3.2.2 影片剪輯與粒子軌跡追蹤 41
3.2.3 粒子周圍流場分析 42
3.3 粒子金屬端厚度量測 42
3.3.1 量測Janus粒子上的金屬厚度 42
3.4 磁性粒子在磁場下所受之力矩 44
3.4.1 計算磁性粒子所受之力矩 44
第四章 實驗結果與討論 45
4.1 金屬塗層厚度對感應電荷電泳之速度影響 45
4.1.1 電場大小與不同金屬塗層厚度Janus粒子運動速度關係 45
4.1.2 不同金屬塗層厚度Janus粒子之電偶極模型 48
4.1.3 電場頻率與不同金屬塗層厚度Janus粒子運動速度關係 51
4.2 方向性和金屬塗層厚度與Janus粒子電泳之關係 57
4.2.1 不同取向對於金屬厚度10nm之Janus粒子電泳速度關係 57
4.2.2 不同取向對於金屬厚度10nm之Janus粒子電偶極關係 60
4.2.3 金屬厚度10nm之Janus粒子在旋轉磁場與電場下之軌跡 61
4.2.4 不同取向對於金屬厚度70nm之Janus粒子電泳速度關係 62
4.2.5 不同取向對於金屬厚度70nm之Janus粒子電偶極關係 63
4.2.6 金屬厚度70nm之Janus粒子在旋轉磁場與電場下之軌跡 65
4.2.7 不同厚薄金屬塗層之Janus粒子感應電荷電泳速度關係 66
4.3 感應電荷電滲流模型 70
4.3.1 不同取向下Janus粒子周圍流場觀察 70
4.3.2 不同取向Janus粒子之感應電荷電滲流運動模型 74
4.4 形狀差異性對粒子感應電荷電泳之影響 76
4.4.1 改變金屬厚度10nm之Janus粒子長短軸與電泳速度關係 76
4.4.2 改變金屬厚度70nm之Janus粒子長短軸與電泳速度關係 78
4.5 操作Janus粒子路徑與不同結構測試 80
4.5.1 粒子之受力情形 80
4.5.2 單顆粒子與鏈狀結構之軌跡比較 81
第五章 結論 83
參考文獻 84
dc.language.isozh-TW
dc.subject超順磁主動粒子zh_TW
dc.subject感應電荷電泳zh_TW
dc.subject感應偶極zh_TW
dc.subject金屬厚度zh_TW
dc.subject不同取向性zh_TW
dc.subjectInduced dipoleen
dc.subjectInduced-charge electrophoresisen
dc.subjectMetal thicknessen
dc.subjectOrientationen
dc.subjectSuperparamagnetic Janus particleen
dc.title非對稱粒子在不同取向下感應電荷電泳之研究zh_TW
dc.titleOrientation Dependent Induced-Charge Electrophoresis of Metallic Coated Janus Particleen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李雨(U Lei),翁宗賢(Tzong-Shyan Wung)
dc.subject.keyword超順磁主動粒子,感應電荷電泳,感應偶極,金屬厚度,不同取向性,zh_TW
dc.subject.keywordSuperparamagnetic Janus particle,Induced-charge electrophoresis,Induced dipole,Metal thickness,Orientation,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201702319
dc.rights.note有償授權
dc.date.accepted2017-08-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved