請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67498完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁詩同 | |
| dc.contributor.author | Meng-Tsz Tsai | en |
| dc.contributor.author | 蔡孟詞 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:34:51Z | - |
| dc.date.available | 2017-08-04 | |
| dc.date.copyright | 2017-08-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-01 | |
| dc.identifier.citation | 1. Neuschwander-Tetri BA. Non-alcoholic fatty liver disease. BMC Med 15, 45 (2017).
2. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 313, 2263-2273 (2015). 3. Chalasani N, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55, 2005-2023 (2012). 4. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73-84 (2016). 5. Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 18, 2300-2308 (2012). 6. Ito M, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res 37, 50-57 (2007). 7. Deng QG, et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology 42, 905-914 (2005). 8. Kanuri G, Bergheim I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci 14, 11963-11980 (2013). 9. Nishikawa S, Yasoshima A, Doi K, Nakayama H, Uetsuka K. Involvement of sex, strain and age factors in high fat diet-induced obesity in C57BL/6J and BALB/cA mice. Exp Anim 56, 263-272 (2007). 10. Anstee QM, Goldin RD. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87, 1-16 (2006). 11. Rinella ME, Green RM. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol 40, 47-51 (2004). 12. Wouters K, et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 48, 474-486 (2008). 13. Matsuzawa N, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46, 1392-1403 (2007). 14. Nomura K, Yamanouchi T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem 23, 203-208 (2012). 15. Ouyang X, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 48, 993-999 (2008). 16. Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 1094-1104 (2009). 17. Thuy S, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr 138, 1452-1455 (2008). 18. Bray GA, York DA. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev 59, 719-809 (1979). 19. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A 94, 2557-2562 (1997). 20. Coombes JD, et al. Osteopontin is a proximal effector of leptin-mediated non-alcoholic steatohepatitis (NASH) fibrosis. Biochim Biophys Acta 1862, 135-144 (2016). 21. de Lima VM, et al. Yo jyo hen shi ko, a novel Chinese herbal, prevents nonalcoholic steatohepatitis in ob/ob mice fed a high fat or methionine-choline-deficient diet. Liver Int 27, 227-234 (2007). 22. Honda H, et al. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology 36, 12-21 (2002). 23. Leclercq IA, Field J, Farrell GC. Leptin-specific mechanisms for impaired liver regeneration in ob/ob mice after toxic injury. Gastroenterology 124, 1451-1464 (2003). 24. Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol 37, 206-213 (2002). 25. Sahai A, et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol 287, G1035-1043 (2004). 26. Takahashi Y, Soejima Y, Kumagai A, Watanabe M, Uozaki H, Fukusato T. Japanese herbal medicines shosaikoto, inchinkoto, and juzentaihoto inhibit high-fat diet-induced nonalcoholic steatohepatitis in db/db mice. Pathol Int 64, 490-498 (2014). 27. Chalasani N, et al. Does leptin play a role in the pathogenesis of human nonalcoholic steatohepatitis? Am J Gastroenterol 98, 2771-2776 (2003). 28. Shimomura I, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 12, 3182-3194 (1998). 29. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86, 839-848 (2004). 30. Nakayama H, et al. Transgenic mice expressing nuclear sterol regulatory element-binding protein 1c in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis. Metabolism 56, 470-475 (2007). 31. Matsuda S, Kobayashi M, Kitagishi Y. Roles for PI3K/AKT/PTEN Pathway in Cell Signaling of Nonalcoholic Fatty Liver Disease. ISRN Endocrinol 2013, 472432 (2013). 32. Horie Y, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113, 1774-1783 (2004). 33. Feng Q, et al. Multi-targeting therapeutic mechanisms of the Chinese herbal medicine QHD in the treatment of non-alcoholic fatty liver disease. Oncotarget, (2017). 34. Wang Q, et al. RNA sequence analysis of rat acute experimental pancreatitis with and without fatty liver: a gene expression profiling comparative study. Sci Rep 7, 734 (2017). 35. Kucera O, et al. The effect of rat strain, diet composition and feeding period on the development of a nutritional model of non-alcoholic fatty liver disease in rats. Physiol Res 60, 317-328 (2011). 36. Romestaing C, et al. Long term highly saturated fat diet does not induce NASH in Wistar rats. Nutr Metab (Lond) 4, 4 (2007). 37. Kucera O, Cervinkova Z. Experimental models of non-alcoholic fatty liver disease in rats. World J Gastroenterol 20, 8364-8376 (2014). 38. Kirsch R, et al. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol 18, 1272-1282 (2003). 39. Vetelainen R, van Vliet A, van Gulik TM. Essential pathogenic and metabolic differences in steatosis induced by choline or methione-choline deficient diets in a rat model. J Gastroenterol Hepatol 22, 1526-1533 (2007). 40. Zhang W, et al. Betaine protects against high-fat-diet-induced liver injury by inhibition of high-mobility group box 1 and Toll-like receptor 4 expression in rats. Dig Dis Sci 58, 3198-3206 (2013). 41. Wang W, Zhao C, Zhou J, Zhen Z, Wang Y, Shen C. Simvastatin ameliorates liver fibrosis via mediating nitric oxide synthase in rats with non-alcoholic steatohepatitis-related liver fibrosis. PLoS One 8, e76538 (2013). 42. Ackerman Z, et al. Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 45, 1012-1018 (2005). 43. Kawasaki T, et al. Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. J Nutr 139, 2067-2071 (2009). 44. Jegatheesan P, et al. Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats. Br J Nutr 116, 191-203 (2016). 45. Yamashita T, Murakami T, Iida M, Kuwajima M, Shima K. Leptin receptor of Zucker fatty rat performs reduced signal transduction. Diabetes 46, 1077-1080 (1997). 46. Godbole V, York DA. Lipogenesis in situ in the genetically obese Zucker fatty rat (fa/fa): role of hyperphagia and hyperinsulinaemia. Diabetologia 14, 191-197 (1978). 47. Kakuma T, et al. Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets. Proc Natl Acad Sci U S A 97, 8536-8541 (2000). 48. Carmiel-Haggai M, Cederbaum AI, Nieto N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J 19, 136-138 (2005). 49. Yang YY, et al. Hepatic endothelin-1 and endocannabinoids-dependent effects of hyperleptinemia in nonalcoholic steatohepatitis-cirrhotic rats. Hepatology 55, 1540-1550 (2012). 50. Takiguchi S, et al. Disrupted cholecystokinin type-A receptor (CCKAR) gene in OLETF rats. Gene 197, 169-175 (1997). 51. Jung TS, Kim SK, Shin HJ, Jeon BT, Hahm JR, Roh GS. alpha-lipoic acid prevents non-alcoholic fatty liver disease in OLETF rats. Liver Int 32, 1565-1573 (2012). 52. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41, 1422-1428 (1992). 53. Song YS, et al. Time course of the development of nonalcoholic Fatty liver disease in the Otsuka long-evans Tokushima Fatty rat. Gastroenterol Res Pract 2013, 342648 (2013). 54. Ota T, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology 132, 282-293 (2007). 55. Uno M, et al. Tranilast, an antifibrogenic agent, ameliorates a dietary rat model of nonalcoholic steatohepatitis. Hepatology 48, 109-118 (2008). 56. Lee L, et al. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology 50, 56-67 (2009). 57. Li SJ, Ding ST, Mersmann HJ, Chu CH, Hsu CD, Chen CY. A nutritional nonalcoholic steatohepatitis minipig model. J Nutr Biochem 28, 51-60 (2016). 58. Galton DJ. Lipogenesis in human adipose tissue. J Lipid Res 9, 19-26 (1968). 59. Leveille GA, O'Hea EK, Chakbabarty K. In vivo lipogenesis in the domestic chicken. Proc Soc Exp Biol Med 128, 398-401 (1968). 60. Laliotis GP, Bizelis I, Rogdakis E. Comparative Approach of the de novo Fatty Acid Synthesis (Lipogenesis) between Ruminant and Non Ruminant Mammalian Species: From Biochemical Level to the Main Regulatory Lipogenic Genes. Curr Genomics 11, 168-183 (2010). 61. Corominas J, et al. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition. BMC Genomics 14, 843 (2013). 62. Ayala I, Castillo AM, Adanez G, Fernandez-Rufete A, Perez BG, Castells MT. Hyperlipidemic chicken as a model of non-alcoholic steatohepatitis. Exp Biol Med (Maywood) 234, 10-16 (2009). 63. Sanchez-Polo MT, Castells MT, Garcia-Perez B, Martin A, Adanez G, Ayala I. Effect of diet/atorvastatin on atherosclerotic lesions associated to nonalcoholic fatty liver disease in chickens. Histol Histopathol 30, 1439-1446 (2015). 64. Martin-Castillo A, Castells MT, Adanez G, Polo MT, Perez BG, Ayala I. Effect of atorvastatin and diet on non-alcoholic fatty liver disease activity score in hyperlipidemic chickens. Biomed Pharmacother 64, 275-281 (2010). 65. Jiang S, Cheng HW, Cui LY, Zhou ZL, Hou JF. Changes of blood parameters associated with bone remodeling following experimentally induced fatty liver disorder in laying hens. Poult Sci 92, 1443-1453 (2013). 66. Makovicky P, Dudova M, Tumova E, Rajmon R, Vodkova Z. Experimental study of non-alcoholic fatty liver disease (NAFLD) on a model of starving chickens: is generalization of steatosis accompanied by fibrosis of the liver tissue? Pathol Res Pract 207, 151-155 (2011). 67. Diaz GJ, Squires EJ, Julian RJ. The use of selected plasma enzyme activities for the diagnosis of fatty liver-hemorrhagic syndrome in laying hens. Avian Dis 43, 768-773 (1999). 68. Jaensch S. Diagnosis of avian hepatic disease. Semin Avian Exot Pet 9, 126-135 (2000). 69. Fitzpatrick E, Dhawan A. Noninvasive biomarkers in non-alcoholic fatty liver disease: current status and a glimpse of the future. World J Gastroenterol 20, 10851-10863 (2014). 70. Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med 344, 495-500 (2001). 71. Obika M, Noguchi H. Diagnosis and evaluation of nonalcoholic fatty liver disease. Exp Diabetes Res 2012, 145754 (2012). 72. Mofrad P, et al. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology 37, 1286-1292 (2003). 73. Nyblom H, Berggren U, Balldin J, Olsson R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol 39, 336-339 (2004). 74. Angulo P, et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45, 846-854 (2007). 75. Celle G, Savarino V, Picciotto A, Magnolia MR, Scalabrini P, Dodero M. Is hepatic ultrasonography a valid alternative tool to liver biopsy? Report on 507 cases studied with both techniques. Dig Dis Sci 33, 467-471 (1988). 76. Saadeh S, et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 123, 745-750 (2002). 77. Sandrin L, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 29, 1705-1713 (2003). 78. Wong VW, et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 51, 454-462 (2010). 79. Mikolasevic I, et al. Nonalcoholic fatty liver disease (NAFLD) proven by transient elastography in patients with coronary heart disease. Wien Klin Wochenschr 126, 474-479 (2014). 80. Abenavoli L, Beaugrand M. Transient elastography in non-alcoholic fatty liver disease. Ann Hepatol 11, 172-178 (2012). 81. Han MA, Saouaf R, Ayoub W, Todo T, Mena E, Noureddin M. Magnetic resonance imaging and transient elastography in the management of Nonalcoholic Fatty Liver Disease (NAFLD). Expert Rev Clin Pharmacol 10, 379-390 (2017). 82. Dulai PS, Sirlin CB, Loomba R. MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: Clinical trials to clinical practice. J Hepatol 65, 1006-1016 (2016). 83. Doycheva I, et al. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther 43, 83-95 (2016). 84. Targher G, et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30, 1212-1218 (2007). 85. Williamson RM, et al. Prevalence of and risk factors for hepatic steatosis and nonalcoholic Fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care 34, 1139-1144 (2011). 86. Guerra JA, Trippia M, Pissaia A, Teixeira BC, Ivantes CA. Acoustic Radiation Force Impulse Is Equivalent to Liver Biopsy to Evaluate Liver Fibrosis in Patients with Chronic Hepatitis C and Nonalcoholic Fatty Liver Disease. Arq Gastroenterol 52, 234-238 (2015). 87. Cassinotto C, et al. Liver stiffness in nonalcoholic fatty liver disease: A comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology 63, 1817-1827 (2016). 88. Yoneda M, et al. Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology 256, 640-647 (2010). 89. Karlas T, et al. Evaluation of Transient Elastography, Acoustic Radiation Force Impulse Imaging (ARFI), and Enhanced Liver Function (ELF) Score for Detection of Fibrosis in Morbidly Obese Patients. PLoS One 10, e0141649 (2015). 90. Cui J, et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the Diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: A prospective study. Hepatology 63, 453-461 (2016). 91. Zeisel SH, Mar MH, Howe JC, Holden JM. Concentrations of choline-containing compounds and betaine in common foods. J Nutr 133, 1302-1307 (2003). 92. Bidulescu A, Chambless LE, Siega-Riz AM, Zeisel SH, Heiss G. Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord 7, 20 (2007). 93. Kathirvel E, et al. Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am J Physiol Gastrointest Liver Physiol 299, G1068-1077 (2010). 94. Song Z, et al. Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 293, G894-902 (2007). 95. Erman F, Balkan J, Cevikbas U, Kocak-Toker N, Uysal M. Betaine or taurine administration prevents fibrosis and lipid peroxidation induced by rat liver by ethanol plus carbon tetrachloride intoxication. Amino Acids 27, 199-205 (2004). 96. Kim SK, Seo JM, Chae YR, Jung YS, Park JH, Kim YC. Alleviation of dimethylnitrosamine-induced liver injury and fibrosis by betaine supplementation in rats. Chem Biol Interact 177, 204-211 (2009). 97. Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, Kraegen EW. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 40, 280-289 (1991). 98. Friedberg CE, Janssen MJ, Heine RJ, Grobbee DE. Fish oil and glycemic control in diabetes. A meta-analysis. Diabetes Care 21, 494-500 (1998). 99. Amann T, et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 100, 646-653 (2009). 100. Chen YJ, et al. Docosahexaenoic acid suppresses the expression of FoxO and its target genes. J Nutr Biochem 23, 1609-1616 (2012). 101. Oh DY, et al. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects. Cell 142, 687-698 (2010). 102. Patijn GA, Lieber A, Schowalter DB, Schwall R, Kay MA. Hepatocyte growth factor induces hepatocyte proliferation in vivo and allows for efficient retroviral-mediated gene transfer in mice. Hepatology 28, 707-716 (1998). 103. Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 122, 1450-1459 (1984). 104. Michalopoulos G, Houck KA, Dolan ML, Leutteke NC. Control of hepatocyte replication by two serum factors. Cancer Res 44, 4414-4419 (1984). 105. Russell WE, McGowan JA, Bucher NL. Biological properties of a hepatocyte growth factor from rat platelets. J Cell Physiol 119, 193-197 (1984). 106. Daniele B, et al. Met as Prognostic Factor and Therapeutic Target in Pretreated Hepatocellular Carcinoma (Hcc): Final Results of a Randomized Controlled Phase 2 Trial (Rct) with Tivantinib (Arq 197). Ann Oncol 23, 225-225 (2012). 107. Giordano S, Columbano A. Met as a therapeutic target in HCC: Facts and hopes. J Hepatol 60, 442-452 (2014). 108. Tushir JS, D'Souza-Schorey C. ARF6-dependent activation of ERK and Rac1 modulates epithelial tubule development. EMBO J 26, 1806-1819 (2007). 109. Hu B, Shi B, Jarzynka MJ, Yiin JJ, D'Souza-Schorey C, Cheng SY. ADP-ribosylation factor 6 regulates glioma cell invasion through the IQ-domain GTPase-activating protein 1-Rac1-mediated pathway. Cancer Res 69, 794-801 (2009). 110. Hongu T, et al. Arf6 regulates tumour angiogenesis and growth through HGF-induced endothelial beta1 integrin recycling. Nat Commun 6, 7925 (2015). 111. Sakagami H, et al. Distinct spatiotemporal expression of EFA6D, a guanine nucleotide exchange factor for ARF6, among the EFA6 family in mouse brain. Brain Res 1093, 1-11 (2006). 112. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 81, 153-208 (2001). 113. D'Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7, 347-358 (2006). 114. Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature Reviews Molecular Cell Biology 12, 362-375 (2011). 115. Pasqualato S, Menetrey J, Franco M, Cherfils J. The structural GDP/GTP cycle of human Arf6. EMBO Rep 2, 234-238 (2001). 116. Hongu T, Kanaho Y. Activation machinery of the small GTPase Arf6. Adv Biol Regul 54, 59-66 (2014). 117. Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75, 1137-1144 (1993). 118. Hiroyama M, Exton JH. Localization and regulation of phospholipase D2 by ARF6. J Cell Biochem 95, 149-164 (2005). 119. Honda A, et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521-532 (1999). 120. Funakoshi Y, Hasegawa H, Kanaho Y. Regulation of PIP5K activity by Arf6 and its physiological significance. J Cell Physiol 226, 888-895 (2011). 121. van den Bout I, Divecha N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci 122, 3837-3850 (2009). 122. Inoue H, Randazzo PA. Arf GAPs and their interacting proteins. Traffic 8, 1465-1475 (2007). 123. Chen PW, Luo R, Jian X, Randazzo PA. The Arf6 GTPase-activating proteins ARAP2 and ACAP1 define distinct endosomal compartments that regulate integrin alpha5beta1 traffic. J Biol Chem 289, 30237-30248 (2014). 124. Jackson TR, et al. ACAPs are arf6 GTPase-activating proteins that function in the cell periphery. J Cell Biol 151, 627-638 (2000). 125. Krugmann S, et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol Cell 9, 95-108 (2002). 126. Klein S, Franco M, Chardin P, Luton F. Role of the Arf6 GDP/GTP cycle and Arf6 GTPase-activating proteins in actin remodeling and intracellular transport. J Biol Chem 281, 12352-12361 (2006). 127. Randazzo PA, Hirsch DS. Arf GAPs: multifunctional proteins that regulate membrane traffic and actin remodelling. Cell Signal 16, 401-413 (2004). 128. Tanabe K, Torii T, Natsume W, Braesch-Andersen S, Watanabe T, Satake M. A novel GTPase-activating protein for ARF6 directly interacts with clathrin and regulates clathrin-dependent endocytosis. Mol Biol Cell 16, 1617-1628 (2005). 129. Natsume W, et al. SMAP2, a novel ARF GTPase-activating protein, interacts with clathrin and clathrin assembly protein and functions on the AP-1-positive early endosome/trans-Golgi network. Mol Biol Cell 17, 2592-2603 (2006). 130. Prigent M, et al. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J Cell Biol 163, 1111-1121 (2003). 131. Liu L, et al. SCAMP2 interacts with Arf6 and phospholipase D1 and links their function to exocytotic fusion pore formation in PC12 cells. Mol Biol Cell 16, 4463-4472 (2005). 132. D'Souza-Schorey C, Li G, Colombo MI, Stahl PD. A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267, 1175-1178 (1995). 133. Suzuki A, et al. The scaffold protein JIP3 functions as a downstream effector of the small GTPase ARF6 to regulate neurite morphogenesis of cortical neurons. FEBS Lett 584, 2801-2806 (2010). 134. Shin OH, Couvillon AD, Exton JH. Arfophilin is a common target of both class II and class III ADP-ribosylation factors. Biochemistry 40, 10846-10852 (2001). 135. Jing J, Tarbutton E, Wilson G, Prekeris R. Rab11-FIP3 is a Rab11-binding protein that regulates breast cancer cell motility by modulating the actin cytoskeleton. Eur J Cell Biol 88, 325-341 (2009). 136. Kim Y, et al. ADP-ribosylation factor 6 (ARF6) bidirectionally regulates dendritic spine formation depending on neuronal maturation and activity. J Biol Chem 290, 7323-7335 (2015). 137. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8, 187-198 (2008). 138. Testa JR, Tsichlis PN. AKT signaling in normal and malignant cells. Oncogene 24, 7391-7393 (2005). 139. Di Paolo G, et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature 420, 85-89 (2002). 140. Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89-93 (2002). 141. Ling K, Bairstow SF, Carbonara C, Turbin DA, Huntsman DG, Anderson RA. Type I gamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. J Cell Biol 176, 343-353 (2007). 142. Doughman RL, Firestone AJ, Anderson RA. Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place. J Membr Biol 194, 77-89 (2003). 143. Park SJ, Itoh T, Takenawa T. Phosphatidylinositol 4-phosphate 5-kinase type I is regulated through phosphorylation response by extracellular stimuli. J Biol Chem 276, 4781-4787 (2001). 144. Halstead JR, et al. A role for PtdIns(4,5)P2 and PIP5Kalpha in regulating stress-induced apoptosis. Curr Biol 16, 1850-1856 (2006). 145. Ling K, et al. Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch. J Cell Biol 163, 1339-1349 (2003). 146. Aikawa Y, Martin TF. ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J Cell Biol 162, 647-659 (2003). 147. Ishihara H, et al. Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem 273, 8741-8748 (1998). 148. Kwiatkowska K. One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane. Cell Mol Life Sci 67, 3927-3946 (2010). 149. Funakoshi Y, Hasegawa H, Kanaho Y. Activation mechanisms of PIP5K isozymes by the small GTPase ARF6. Adv Enzyme Regul 50, 72-80 (2010). 150. Weernink PA, et al. Activation of type I phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42. J Biol Chem 279, 7840-7849 (2004). 151. Tolias KF, Hartwig JH, Ishihara H, Shibasaki Y, Cantley LC, Carpenter CL. Type Ialpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol 10, 153-156 (2000). 152. Vidal-Quadras M, et al. Rac1 and calmodulin interactions modulate dynamics of ARF6-dependent endocytosis. Traffic 12, 1879-1896 (2011). 153. Hernandez-Deviez DJ, Roth MG, Casanova JE, Wilson JM. ARNO and ARF6 regulate axonal elongation and branching through downstream activation of phosphatidylinositol 4-phosphate 5-kinase alpha. Mol Biol Cell 15, 111-120 (2004). 154. Chang LC, et al. Signaling mechanisms of inhibition of phospholipase D activation by CHS-111 in formyl peptide-stimulated neutrophils. Biochem Pharmacol 81, 269-278 (2011). 155. Porciello N, Kunkl M, Viola A, Tuosto L. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation. Front Immunol 7, 186 (2016). 156. Lee SY, Voronov S, Letinic K, Nairn AC, Di Paolo G, De Camilli P. Regulation of the interaction between PIPKI gamma and talin by proline-directed protein kinases. J Cell Biol 168, 789-799 (2005). 157. Nakano-Kobayashi A, et al. Role of activation of PIP5Kgamma661 by AP-2 complex in synaptic vesicle endocytosis. EMBO J 26, 1105-1116 (2007). 158. Muscolini M, et al. Phosphatidylinositol 4-phosphate 5-kinase alpha and Vav1 mutual cooperation in CD28-mediated actin remodeling and signaling functions. J Immunol 194, 1323-1333 (2015). 159. Kallikourdis M, et al. Phosphatidylinositol 4-Phosphate 5-Kinase beta Controls Recruitment of Lipid Rafts into the Immunological Synapse. J Immunol 196, 1955-1963 (2016). 160. Muscolini M, et al. Phosphatidylinositol 4-phosphate 5-kinase alpha activation critically contributes to CD28-dependent signaling responses. J Immunol 190, 5279-5286 (2013). 161. Farese RV, Jr., Zechner R, Newgard CB, Walther TC. The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance. Cell Metab 15, 570-573 (2012). 162. Taubes G. Cancer research. Unraveling the obesity-cancer connection. Science 335, 28, 30-22 (2012). 163. Sun Z, Lazar MA. Dissociating fatty liver and diabetes. Trends Endocrinol Metab 24, 4-12 (2013). 164. Ekstedt M, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44, 865-873 (2006). 165. Liu Y, et al. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 304, G449-468 (2013). 166. Fournier E, Peresson R, Guy G, Hermier D. Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis. Poult Sci 76, 599-607 (1997). 167. Ayala I, Castillo AM, Adanez G, Fernandez-Rufete A, Perez BG, Castells MT. Hyperlipidemic Chicken as a Model of Non-Alcoholic Steatohepatitis. Exp Biol Med 234, 10-16 (2009). 168. Makovicky P, Dudova M, Tumova E, Rajmon R, Vodkova Z. Experimental study of non-alcoholic fatty liver disease (NAFLD) on a model of starving chickens: Is generalization of steatosis accompanied by fibrosis of the liver tissue? Pathol Res Pract 207, 151-155 (2011). 169. National Research Council. Nutrient Requirements of Poultry, Ninth Revised Edition. National Research Council (1994). 170. Polin D, Wolford JH. Role of Estrogen as a Cause of Fatty Liver Hemorrhagic Syndrome. J Nutr 107, 873-886 (1977). 171. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675 (2012). 172. Fujii M, et al. Primary culture of chicken hepatocytes in serum-free medium (pH 7.8) secreted albumin and transferrin for a long period in free gas exchange with atmosphere. Int J Biochem Cell Biol 28, 1381-1391 (1996). 173. Whiford W, Manwaring J. Lipids in cell culture media. Application-Specific Technical Information—Application Notes 152-154 (2004). 174. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31, 46-+ (2013). 175. Trapnell C, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562-578 (2012). 176. Han CL, et al. A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol Cell Proteomics 7, 1983-1997 (2008). 177. Bergstrom JD, Wong GA, Edwards PA, Edmond J. The Regulation of Acetoacetyl-Coa Synthetase-Activity by Modulators of Cholesterol-Synthesis Invivo and the Utilization of Acetoacetate for Cholesterogenesis. J Biol Chem 259, 4548-4553 (1984). 178. Merk M, et al. The D-dopachrome tautomerase (DDT) gene product is a cyt | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67498 | - |
| dc.description.abstract | 隨著隨著肥胖盛行率的增加,非酒精性脂肪肝病 (non-alcoholic fatty liver disease, NAFLD) 已是世界上最常見的肝臟疾病。雖然非酒精性脂肪肝並無明顯病癥且具有可逆轉性,但隨後衍生之非酒精脂肪肝炎 (non-alcoholic steatohepatitis , NASH) 已被指出約有10-29%的機率會在十年內發展為不可逆轉性地肝纖維化與硬化 (liver fibrosis and cirrhosis), 導致肝功能喪失,甚至發展成肝癌 (hepatocellular carcinoma, HCC)。目前除了侵入性之肝臟切片檢查能作為非酒精性脂肪肝之確切診斷依據,仍未有可作為診斷非酒精性脂肪肝病之準確血液生物標記。 因此,發展適用之動物模式與可應用之簡易診斷方法當前所迫需。
由於雞隻與人類同樣使用肝臟作為脂質生合成的主要器官,但雞隻並未有相應的脂肪肝或肝臟損傷之生物性指標。因此本研究利用雞隻作為非酒精性脂肪肝病之動物模式,並應用轉錄體定序 (Transcriptome sequencing) 與蛋白質體學(Proteomics)尋找能有效應用之非酒精性脂肪肝生物性指標。研究結果顯示,雞隻成功發展出非誘導式的非酒精性脂肪肝病,且運用這些雞隻成功篩選出四個具有成為非酒精性脂肪肝病指標潛力之血漿蛋白質。包含acetoacetyl-CoA synthetase (AACS), dipeptidyl-peptidase 4 (DPP4), glutamine synthetase (GLUL) 以及glutathione S-transferase (GST)。並且藉由添加具有保護肝臟肝臟功能之甜菜鹼 (Betaine) 或二十二碳六烯酸 (Docosahexaenoic Acid, DHA) 於雞隻飼養或初代雞隻肝臟細胞培養試驗中,發現生物性指標之表現量與雞隻或肝臟細胞脂肪堆積量成正比,也從盲測的檢驗中驗證所篩選出的脂肪肝指標確實具有成為雞隻非酒精性脂肪肝病模式生物標記之特性。 接著使用四氯化碳誘導雞隻肝纖維化,並在雞隻飲用水中添加甜菜鹼以逆轉誘導之肝纖維化,藉此探討此四個生物標記是否可用來測定肝纖維化。實驗結果顯示,血漿中的DPP4與GST濃度伴隨肝纖維化而提升,此外,甜菜鹼可顯著抑制四氯化碳誘發之肝纖維化,血漿中的DPP4與GST的濃度也隨肝纖維化的抑制而減低。縱合上述兩個實驗,AACS, DPP4, GLUL以及GST除可作為雞隻非酒精性脂肪肝病之生物標記,DPP4與GST還可被應用於測定肝臟纖維化的血液指標;因此,我們認為合併這四個蛋白質的測定,應可幫助診斷時分辨非酒精性脂肪肝病與肝臟纖維化。 由於肝臟具有極高的再生能力,患有肝硬化與肝癌之患者常以切除部分肝臟作為治療的手段。在本研究中另外探討ADP-ribosylation factor 6 (Arf6) 以及Phosphatidylinositol 4-phosphate 5-kinase A (PIP5K1A)在肝臟再生中扮演的角色。前人研究顯示剔除Arf6影響小鼠胚胎肝臟發育並導致小鼠胚胎死亡,另外曾抑制肝臟生長因子(Hepatocyte growth factor, HGF) 誘導之胚胎肝臟細胞網狀組織的形成(Hepatic cord formation),此結果顯示Arf6在HGF的訊息傳遞中扮演著重要角色。藉由剔除HepG2細胞中之Arf6,Arf6在HGF誘導之HepG2細胞增生,以及傳遞細胞增生訊息之AKT的磷酸化扮演正向調控的角色;另外, Arf6能透過recruitment of PIP5K1A (PIP2 producing enzyme) 至HGF受體c-Met,進而促進HGF誘導之AKT磷酸化。由於HGF是肝臟再生時主要被肝臟分泌的生長激素,因此我們應用PIP5K1A剔除小鼠與部分肝切除手術(2/3 Partial heaptectomy)以探討PIP5K1A在活體小鼠肝臟中所扮演的功能。結果顯示PIP5K1A剔除小鼠其肝臟再生能力與肝臟細胞增殖能力受到抑制。綜合以上,在HGF 誘發訊息傳遞中Arf6-PIP5K1A-PIP2-AKT在肝臟細胞增殖與肝臟再生中扮演重要角色。 | zh_TW |
| dc.description.abstract | With the high prevalence of obesity, non-alcoholic fatty liver disease (NAFLD) becomes one of the most common liver diseases in the world. Although, the NAFLD is a non-viral and reversible disease, it tends to progress from simple steatosis to nonalcoholic steatohepatitis (NASH), then to irreversible fibrosis and cirrhosis, eventually even to hepatocellular carcinoma (HCC). Up to date, there is no reliable biomarkers used to identify NAFLD, and further discern NAFLD, NASH, and liver fibrosis progression. Invasive and costly liver biopsy remains a standard procedure to diagnose and stage NAFLD. Since the liver account for most pf lipogenesis in both human and chicken, chicken is suggested as a suitable model for studying human NAFLD. However, there is no appropriate NAFLD biomarker fin the chickens. Therefore, the aim of this study is to identify the potential non-invasive plasma biomarkers is the chicken NAFLD model.
In the study, laying hens progressed into NAFLD spontaneously with age. By using transcriptomic and proteomic analysis, four plasma proteins were identified as potential biomarkers including, acetoacetyl-CoA synthetase (AACS), dipeptidyl-peptidase 4 (DPP4), glutamine synthetase (GLUL) and glutathione S-transferase (GST). The potential of these proteins as biomarkers for NAFLD were confirmed further by feeding chickens with a diet containing hepato-protective nutrients, betaine or DHA, the diet and by supplementing the nutrients into the medium of chicken primary hepatocytes. Results showed that both betaine and DHA supplementations suppressed the development of fatty liver, and both transcript and protein levels of the selected biomarkers showed positive correlation with the degrees of hepatic lipid accumulation. Thus, these results verify the potential of these proteins as NAFLD biomarkers. To examine whether these biomarkers as suitable for diagnosing liver fibrosis, chickens were induced for liver fibrosis by carbon tetrachloride (CCl4) to induce liver fibrosis. Betaine supplementation in drinking water was used to exam its amelioration on CCl4-induced liver fibrosis. Results suggested of hepatic mRNA and plasma DPP4 and GST level were elevated in liver fibrosis group, and betaine supplementation inhibited the development of liver fibrosis with lower plasma DPP4 and GST concentrations. Accordingly, these four biomarkers were concluded as effective biomarker to diagnose NAFLD in chickens. Among the organs liver has a high regenerative capacity. A surgical removal of a portion of the liver is one of treatment strategies for patients with liver cirrhosis or HCC. The study also aimed to investigate the role of ADP-ribosylation factor 6 (Arf6) and phosphatidylinositol 4-phosphate 5-kinase A (PIP5K1A) in liver regeneration. Previous studies have showed that knockout of Arf6 gene cause embryonic lethality due to defect liver development in mice, and Arf6 is required for hepatocyte growth factor (HGF)-dependent formation of hepatic cord formation, which indicates the essential role of Arf6 to mediate HGF signaling. HGF is known as a critical and major growth factor to induce liver regeneration. Using Arf6 knockdown approach, we showed that Arf6 mediates HGF-stimulated hepatocyte proliferation and AKT phosphorylation by recruiting of PIP2-producng enzyme, PIP5K1A to HGF receptor (c-Met) in HepG2 cells. To validate the observation in in vivo models, Pip5k1a knockout mice with 2/3 partial hepatectomy were used to investigate the role of PIP5K1A in liver regeneration. A significant inhibition of liver regeneration and hepatocyte proliferation in Pip5k1a knockout mice were observed. These results suggest the essential role of Arf6-PIP5K1A-AKT to mediate HGF signaling in hepatocyte proliferation to liver regeneration process. In conclusion, transcriptomic and proteomic studies, AACS, DPP4, GST and GLUL were concluded as potential biomarkers for NAFLD and DPP4 and GST for liver fibrosis in the chicken models. Both betaine and DHA supplementation in chicken diet effectively ameliorated NAFLD and liver fibrosis induced by CCl4. In a separate study, Arf6-PIP5K1A-AKT cascade was conclude to mediate HGF signaling transduction in liver regeneration. These findings may shed new light to reveal the molecular mechanism of liver regeneration, and provide a potential diagnostic markers and therapeutic strategies for treating liver diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:34:51Z (GMT). No. of bitstreams: 1 ntu-106-F00626007-1.pdf: 3863709 bytes, checksum: 688b7742713b86f3a6e28bb4afad14d3 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員審定書 I
序言.............................................................................................................................II 中文摘要……………………………………………………………………………III Abstract………………………………………………………………………….....VI List of figures……………………………………………………………… ………XI List of tables ………………………………………………………………………XIII 1. Literature review 1.1 Nonalcoholic fatty liver disease (NAFLD)……………………….…….…1 1.2 NAFLD models……………………………………………………………2 1.2.1 Mouse models………………………………………………………..2 1.2.2 Rat model…………………………………………………………….8 1.2.3 Pig model………………………………………………………….15 1.2.4 Avian models……………………………………………………...16 1.3 Diagnosis methods of NAFLD………………………………………..…..18 1.4 Hepatic-protection nutrients………………………………………………21 1.4.1 Betaine…………………………………………………………….22 1.4.2 DHA………………………………………………………………22 1.5 Summary 1…………………………………………………………..23 1.6 Hepatocyte growth factor (HGF) and hepatocyte proliferation…………..24 1.7 Small GTPases……………………………………………………………25 1.8 ADP-ribosylation factor (Arf) family…………………………………… 25 1.9 Arf6 activation cycle……………………………………………………...26 1.10 Arf6 GEFs………………………………………………………………...27 1.11 Effectors of Arf6………………………………………………………….28 1.12 PIP5K1……………………………………………………………………30 1.13 Localization of PIP5K1 isozymes………………………………………...31 1.13.1 Regulation by phosphorylation…………………………………32 1.13.2 Structural differences of PIP5K isozymes……………………...33 1.13.3 Proteins regulating PIP5K1…………………………………….34 1.14 Summary 2…………………………………………………………..35 2. Identification of potential plasma biomarkers for non-alcoholic fatty liver disease in laying hens through transcriptomic and proteomic approach 2.1 Abstract…………………………………………………………………42 2.2 Introductions………………………………………………………………44 2.3 Methods and Materials…………………………………………………….46 2.4 Results……………………………………………………………………..56 2.5 Discussions………………………………………………………………...64 3. Alleviation of carbon-tetrachloride-induced liver injury and fibrosis by dietary supplementation of betaine in chickens 3.1 Abstract…………………………………………………………………...88 3.2 Introductions………………………………………………………………90 3.3 Methods and Materials…………………………………………………...93 3.4 Results……………………………………………………………………99 3.5 Discussions……………………………………………………………….104 4. Regulation of HGF-induced hepatocyte proliferation by the small GTPase Arf6 through the PIP2-producing enzyme PIP5K1A 4.1 Abstract………………………………………………………………… .123 4.2 Introductions……………………………………………………………..125 4.3 Methods and Materials…………………………………………………...128 4.4 Results……………………………………………………………………135 4.5 Discussions……………………………………………………………….144 5. References…………………………………………………………………….162 6. Supplemental materials……………………………………………….……..191 | |
| dc.language.iso | en | |
| dc.subject | PIP5K1A | zh_TW |
| dc.subject | 非酒精性脂肪肝 | zh_TW |
| dc.subject | 生物標記 | zh_TW |
| dc.subject | 雞 | zh_TW |
| dc.subject | 肝臟生長因子 | zh_TW |
| dc.subject | Arf6 | zh_TW |
| dc.subject | biomarker | en |
| dc.subject | NAFLD | en |
| dc.subject | liver regeneration | en |
| dc.subject | PIP5K1A | en |
| dc.subject | Arf6 | en |
| dc.subject | HGF | en |
| dc.subject | chicken | en |
| dc.title | 非酒精性脂肪肝雞隻模式與生物指標之建立與應用於篩選改善非酒精性脂肪肝之功能性營養成分 | zh_TW |
| dc.title | Development of non-alcoholic fatty liver biomarkers for screening functional ingredients in the chicken model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳靜宜,陳洵一,金保安則,葉秀慧 | |
| dc.subject.keyword | 非酒精性脂肪肝,生物標記,雞,肝臟生長因子,Arf6,PIP5K1A, | zh_TW |
| dc.subject.keyword | NAFLD,biomarker,chicken,HGF,Arf6,PIP5K1A,liver regeneration, | en |
| dc.relation.page | 197 | |
| dc.identifier.doi | 10.6342/NTU201702249 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
