Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源
dc.contributor.authorLiang-Yu Chenen
dc.contributor.author陳亮宇zh_TW
dc.date.accessioned2021-06-17T01:33:45Z-
dc.date.available2019-08-11
dc.date.copyright2017-08-11
dc.date.issued2017
dc.date.submitted2017-08-02
dc.identifier.citation台中區農業改良場育成品種專輯 - 特刊94號, pg: 92。
行政院環保署環境檢驗所。2002。土壤水分含量測定方法-重量法。(NIEA S280.61C)。
行政院環保署環境檢驗所。2003。土壤中重金屬檢測方法-王水消化法 (NIEA S321.63B)。
行政院環保署環境檢驗所。2011。土壤中陽離子交換容量-醋酸銨法。(NIEA S201.61C)。
林家棻。1967。台灣省農田肥力測定。台灣省農業試驗所報告。台灣省農業試驗所刊行。No. 28 : 第 2 頁。
簡柏勛。2015。新興汙染物鎵和銦對水耕栽培水稻生長之影響。國立台灣大學農業化學系碩士論文。
蘇政諺。2016。新興汙染物鎵與銦在不同土壤中之動態及其對水稻幼苗生長之影響。國立台灣大學農業化學系碩士論文。
Adriano, D. C. (1992) Biogeochemistry of trace metals (1st ed.). Lewis Publishing, Boca Raton
Alfantazi, A. M., & Moskalyk, R. R. (2003) Processing of indium: a review. Minerals Engineering, 16, 687-694.
Amacher, M. C. (1996) Nickel, cadmium, and lead. Methods of Soil Analysis Part 3—Chemical Methods, (methodsofsoilan3), 739-768. ASA and SSSA, Madison, WI
Asami, T., Yoshino, A., Kubota, M., & Gotoh, S. (1990) Background level of indium and gallium in soil with special reference to the pollution of the soils from zinc and lead smelters. Zeitschrift für Pflanzenernährung und Bodenkunde, 153, 257-259.
Baes, C. F., & Mesmer, R. E. (1976) Hydrolysis of cations. Malabar, Florida: Krieger Publishing Company.
Barančíková, G., & Makovníková, J. (2003) The influence of humic acid quality on the sorption and mobility of heavy metals. Plant Soil Environ, 49(12), 565-571.
Barbalace, K. (1995) Periodic table of elements. EnvironmentalChemistry. com, 2010.
Benézéth, P., Diakonov, I. I., Pokrovski, G. S., Dandurand, J. L., Schott, J., & Khodakovsky, I. L. (1997) Gallium speciation in aqueous solution. Experimental study and modelling: Part 2. Solubility of α-GaOOH in acidic solutions from 150 to 250 C and hydrolysis constants of gallium (III) to 300 C.Geochimica et cosmochimica Acta, 61, 1345-1357.
Berg, T., & Steinnes, E. (1997) Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey. Science of the Total Environment, 208, 197-206.
Bertine, K. K., & Goldberg, E. D. (1971) Fossil fuel combustion and the major sedimentary cycle. Science, 173, 233-235.
Bertsch, P. M., & Bloom, P. R. (1996) Aluminum. Methods of Soil Analysis Part 3—Chemical Methods, (methodsofsoilan3), 517-550. WI: ASA and SSSA, Madison.
Bowen, H. J. M. (1979) Environmental Chemistry of the Elements, Academic Press, New York.
Chang, H. F., Wang, S. L., & Yeh, K. C. (2017) Effect of Gallium Exposure in Arabidopsis thaliana is Similar to Aluminum Stress. Environmental Science & Technology, 51, 1241-1248.
Chattopadhyay, A., & Jervis, R. E. (1974) Multielement determination in market-garden soils by instrumental photon activation analysis. Analytical Chemistry, 46, 1630-1639.
Chen, H. W. (2006) Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bulletin of Environmental Contamination and Toxicology, 77, 289-296.
Chen, H. W. (2007) Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bulletin of Environmental Contamination and Toxicology, 78, 123-127.
Chou, W. L., Wang, C. T., Yang, K. C., & Huang, Y. H. (2008) Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process. Journal of Hazardous Materials, 160, 6-12.
Clarkson, D. T. (1965) The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Annals of Botany, 29(2), 309-315.
Collery, P., Keppler, B., Madoulet, C., & Desoize, B. (2002) Gallium in cancer treatment. Critical Reviews in Oncology/Hematology, 42, 283-296.
Conner, E. A., Yamauchi, H., & Fowler, B. A. (1995) Alterations in the heme biosynthetic pathway from the III-V semiconductor metal, indium arsenide (InAs). Chemico-Biological Interactions, 96, 273-285.
Čurlík, J., & Šefčík, P. (1999) Geochemical atlas of the Slovak Republic. Part V.: Soils. MŽP SR, Bratislava.
Diakonov, I. I., Pokrovski, G. S., Bénézeth, P., Schott, J., Dandurand, J. L., & Escalier, J. (1997) Gallium speciation in aqueous solution. Experimental study and modelling: Part 1. Thermodynamic properties of Ga (OH)4− to 300 C. Geochimica et cosmochimica Acta,61, 1333-1343.
Dodbiba, G., Nagai, H., Wang, L. P., Okaya, K., & Fujita, T. (2012) Leaching of indium from obsolete liquid crystal displays: Comparing grinding with electrical disintegration in context of LCA. Waste Management, 32, 1937-1944.
Dumortier, R., Weber, M. E., & Vera, J. H. (2005) Removal and recovery of gallium from aqueous solutions by complexation with sodium di-(n-octyl) phosphinate. Hydrometallurgy, 76, 207-215.
Dutrizac, J. E., & Chen, T. T. (2000) The behaviour of gallium during jarosite precipitation. Canadian Metallurgical Quarterly, 39, 1-14.
Dvornikov, A. G., Ovsyannikova, L. B., & Sidenko, O. G. (1976) Some peculiarities of biological absorption-coefficients and of biogeochemical coefficients in hydrothermal deposits of donbas in connection with prognostication of hidden mercury mineralization. Geokhimiya, 626-633.
Eriksson, J. (2001). Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops (Vol. 5159). Swedish Environmental Protection Agency, Stockholm.
Fang, Z., & Gesser, H. D. (1996) Recovery of gallium from coal fly ash. Hydrometallurgy, 41, 187-200.
Felix, N. (2000) Indium and indium compounds.Ullmann's Encyclopedia of Industrial Chemistry.
Fergusson, J. E. (1990) The heavy metals, chemistry. Environmental impact and health effect. Pergamon Press, New York.
Flamini, D. O., Saidman, S. B., & Bessone, J. B. (2007) Electrodeposition of gallium onto vitreous carbon. Journal of Applied Electrochemistry, 37, 467-471.
Font, O., Querol, X., Juan, R., Casado, R., Ruiz, C. R., López-Soler, & Peña, F. G. (2007) Recovery of gallium and vanadium from gasification fly ash. Journal of Hazardous Materials, 139, 413-423.
Fowler, B. A., & Goering, P. L. (1991) Antimony. Metals and their compounds in the environment: occurrence, analysis, and biological relevance. Weinheim, VCH, 743-750.
Fthenakis, V., Wang, W., & Kim, H. C. (2009) Life cycle inventory analysis of the production of metals used in photovoltaics. Renewable and Sustainable Energy Reviews, 13, 493-517.
Furr, A. K., Stoewsand, G. S., Bache, C. A., & Lisk, D. J. (1976) Study of Guinea Pigs Fed Swiss Chard Grown on Municipal Sludge-Amended Soil: Multi-Element Content of Tissues. Archives of Environmental Health, 31, 87-91.
Gaillardet, J., Viers, J., & Dupré, B. (2003) Trace elements in river waters. Treatise on Geochemistry, 5, 225-272.
Gasparini, M., Bombardieri, E., Castellani, M., & Tondini, C. (1998) Gallium-67 scintigraphy evaluation of therapy in non-Hodgkin's lymphoma. The Journal of Nuclear Medicine, 39, 1586.
Gee, G. W., & Bauder, J. W. (1986) Particle-size analysis. Methods of soil analysis: Part 1—Physical and mineralogical methods, (methodsofsoilan1), 383-411. ASA and SSSA, Madison, WI.
Genkin, A. D., & Murav’eva, I. V. (1963) Indite and dzhalindite, new indium minerals. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 92, 445-457.
Goering, P. L., Maronpot, R. R., & Fowler, B. A. (1988) Effect of intratracheal gallium arsenide administration on δ-aminolevulinic acid dehydratase in rats: relationship to urinary excretion of aminolevulinic acid. Toxicology and Applied Pharmacology, 92, 179-193.
Goldschmidt, V. M. (1958) Geochemistry. Oxford: Oxford University Press.
Goonan, T. G. (2012) Materials flow of indium in the United States in 2008 and 2009: US Geological Survey Circular 1377. US Geological Survey, Reston, VA, USA.
Gottschling, B. C., Maronpot, R. R., Hailey, J. R., Peddada, S., Moomaw, C. R., Klaunig, J. E., & Nyska, A. (2001) The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicological Sciences, 64, 28-40.
Govindaraju, K. (1994) Compilation of working values and sample description for 383 geostandards. Geostandards and Geoanalytical Research, 18, 1-158.
Gribovskaya, I. F., Letunova, S. W., & Romanova, S. N. (1968) Microelements in the organs of legume plants. Agrokhimiya, 1968, 81-87.
Gupta, B., Mudhar, N., Begum, Z., & Singh, I. (2007) Extraction and recovery of Ga (III) from waste material using Cyanex 923. Hydrometallurgy, 87, 18-26.
Harbuck, D. D. (1992) Gallium and germanium recovery from domestic sources. US Department of the Interior, Bureau of Mines, Washington DC, USA
Hu, Z., & Gao, S. (2008) Upper crustal abundances of trace elements: a revision and update. Chemical Geology, 253, 205-221.
Jaskula, B. W. (2013) Minerals yearbook: Volume I—Minerals and metals, gallium. U.S. Geological Survey, Reston, VA, USA.
Jaskula, B. W. (2015). Mineral Commodity Summaries. U.S. Geological Survey, Reston, VA, USA.
Johnson, G. V., & Barton, L. L. (2007) Inhibition of iron deficiency stress response in cucumber by rare earth elements. Plant Physiology and Biochemistry, 45, 302-308.
Jones, C., & Stasch, A. (2011) The Chemistry of the Group 13 Metals in the +1 Oxidation State. The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities, 285.
Jørgensen, S. E. (2000) Principles of Pollution Abatement: Pollution Abatement for the 21st Century. Elsevier, Amsterdam.
Jorgenson, J.D., & George, M.W. (2005) Mineral Commodity Profile: Indium. U.S. Geological Survey, Reston, VA, USA.
Kabata-Pendias, A. (2011) Trace elements in soils and plants (4th ed.). CRC Press, New York
Kabata-Pendias, A., & Mukherjee, A. B. (2007) Trace elements from soil to human. Springer Science & Business Media.
Kabata-Pendias, A., and H. Pendias. (1999) Biogeochemistry of trace elements. PWN Warsaw, Poland.
Kjølholt, J., Stuer-Lauridsen, F., Mogensen, A. S., & Havelund, S. (2003) The elements in the second rank-an environmental problem now or in the future. Danish EPA. Environmental Project.
Kopittke, P. M., Blamey, F., McKenna, B. A., Wang, P., & Menzies, N. W. (2011) Toxicity of metals to roots of cowpea in relation to their binding strength. Environmental Toxicology and Chemistry, 30, 1827-1833.
Kopittke, P. M., McKenna, B. A., Blamey, F. P. C., Wehr, J. B., & Menzies, N. W. (2009) Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant and Soil, 322, 303-315.
Kramer, D. A. (1988) Gallium and gallium arsenide: supply, technology, and uses (Vol. 9208). Washington, DC: U.S. Department of the Interior, Bureau of Mines.
Ladenberger, A., Demetriades, A., Reimann, C., Birke, M., Sadeghi, M., Uhlbäck, J., & Team, T. G. P. (2015) GEMAS: Indium in agricultural and grazing land soil of Europe—Its source and geochemical distribution patterns. Journal of Geochemical Exploration, 154, 61-80.
Lee, B. F., Chiu, N. T., Chang, J. K., Liu, G. C., & Yu, H. S. (1998) Technetium-99m (V)-DMSA and gallium-67 in the assessment of bone and joint infection.The Journal of Nuclear Medicine, 39, 2128.
Li, Y. H. (2000) A compendium of geochemistry: from solar nebula to the human brain. Princeton University Press, Princeton, Oxford.
Li, Z., Ma, T., Yuan, C., Hou, J., Wang, Q., Wu, L., & Luo, Y. (2016) Metal contamination status of the soil-plant system and effects on the soil microbial community near a rare metal recycling smelter. Environmental Science and Pollution Research, 23, 17625-17634.
Licht, C., Peiró, L. T., & Villalba, G. (2015) Global substance flow analysis of gallium, germanium, and indium: Quantification of extraction, uses, and dissipative losses within their anthropogenic cycles. Journal of Industrial Ecology, 19, 890-903.
Lin, H. C., & Hwang, P. P. (1998) Acute and chronic effects of gallium chloride (GaCl 3) on tilapia (Oreochromis mossambicus) larvae. Bulletin of Environmental Contamination and Toxicology, 60, 931-935.
Liu, J. J., & Liu, Y. (2012) Determination of trace metal elements in water samples from Gansu-Ningxia-Inner Mongolia section of Yellow River by HR-ICP-MS. Sepctrosc Spectr Anal, 32, 331-332.
Madden, E. F., Anderson, C. J., & Goering, P. L. (2004) Indium. Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance (2nd ed), 801-809. Wiley-VCH, Weinheim.
McKeague, J. A., & Day, J. (1966) Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 13-22.
McLean, E. O. (1982) Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 199-224. ASA and SSSA, Madison, WI.
Mehra, O. P., & Jackson, M. L. (1958) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. National Conference on Clays and Clays Minerals.
Nakajima, K., Yokoyama, K., Nakano, K., & Nagasaka, T. (2007) Substance flow analysis of indium for flat panel displays in Japan. Materials Transactions, 48, 2365-2369.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis part 3—chemical methods, (methodsofsoilan3), 961-1010.
NIH/NIEH. (1998) Chairperson’s Report Pathology Working Group (PWG) of Gallium Arsenide Administered by Inhalation to Fischer 344 Rats. EPA Document No. FYI-OTS-1298-1345; Fiche No. OTS0001345.
Novozamsky, I., Lexmond, T. M., & Houba, V. J. G. (1993) A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51, 47-58.
Omura, M., Yamazaki, K., Tanaka, A., Hirata, M., Makita, Y., & Inoue, N. (2000) Changes in the testicular damage caused by indium arsenide and indium phosphide in hamsters during two years after intratracheal instillations. Journal of Occupational Health, 42, 196-204.
Orians, K. J., & Bruland, K. W. (1988) The marine geochemistry of dissolved gallium: a comparison with dissolved aluminum. Geochimica et Cosmochimica Acta, 52, 2955-2962.
Peiró, L. T., Méndez, G. V., & Ayres, R. U. (2013) Material flow analysis of scarce metals: Sources, functions, end-uses and aspects for future supply. Environmental Science & Technology, 47, 2939-2947.
Peng, M. J. (2016) The current situation for global’s semiconductor industry and the opportunities in Taiwan. Taiwan Semiconductor Industry Association. 75, 6−11.
Połedniok, J. (2008) Speciation of scandium and gallium in soil. Chemosphere, 73, 572-579.
Połedniok, J., Kita, A., & Zerzucha, P. (2012) Spectrophotometric and Inductively Coupled Plasma–Optical Emission Spectroscopy Determination of Gallium in Natural Soils and Soils Polluted by Industry: Relationships between Elements. Communications in Soil Science and Plant analysis, 43, 1121-1135.
Qi, W. Q., Cao, J. S., & Chen, Y. L. (1992) Study on the soil environmental background values of In and Tl. Chinese J Soil Sci, 23, 31-33.
Reid, R. J., Rengel, Z., & Smith, F. A. (1996) Membrane fluxes and comparative toxicities of aluminium, scandium and gallium. Journal of Experimental Botany, 47, 1881-1888.
Reimann, C., & De Caritat, P. (2012) Chemical elements in the environment: factsheets for the geochemist and environmental scientist. Springer Science & Business Media.
Reimann, C., & Kriete, C. (2014) Trueness of GEMAS analytical results-the ring test. Chemistry of Europe's Agricultural Soils. Part A: Methodology and Interpretation of the GEMAS Data Set. Schweizerbart Science Publishers, Stuttgart.
Rumack, B.H. (2010) POISINDEX(R) Information System Micromedex, In: Hall, A.H.,Rumack, B.H., (Eds.). Englewood, CO: TOMES(R) Information System Micromedex, Inc., 2010: CCIS Vol. 146, edition expires May, 2010.
Sabot, J.L., & Lauvray, H. (1994) Gallium and Gallium Compounds. John Wiley and Sons, New York.
Sah, J. G., & Chen, J. Y. (1998) Study of the electrokinetic process on Cd and Pb spiked soils. Journal of Hazardous Materials, 58, 301-315
.
Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., & Heitzmann, P. (2005) Geochemical atlas of Europe, part 1, background information, methodology and maps. Geological survey of Finland.
Schroll, E. (1999). Gallium: Element and geochemistry. Encyclopedia of geochemistry, 257-259. Kluwer Academic Publishers, Dordrecht,Germany.
Schroll, E. (1999) Indium: element and geochemistry. Encyclopedia of Geochemistry, 339–340. Kluwer Academic Publishers, Dordrecht,Germany.
Schwarz‐Schampera, U. (2014) Indium. Critical Metals Handbook, 204-229. Chichester: John Wiley & Sons Ltd.
Schwarz-Schampera, U., & Herzig, P. M. (2002) Technological applications and consumption of indium by industries. In Indium (pp. 167-173). Springer, Berlin Heidelberg.
Shacklette, H. T., Erdman, J. A., Harms, T. F., & Papp, C. S. E. (1978) Trace elements in plant foodstuffs. Toxicity of Heavy Metals in the Environment Part, 1, 25-68.
Shiller, A. M., & Frilot, D. M. (1996). The geochemistry of gallium relative to aluminum in Californian streams. Geochimica et Cosmochimica Acta, 60, 1323-1328.
Silver, A. F. M., Ash, A. G. M. S., Stone, A. G. N., Strontium, A. G. N., Sulfur, B. G. N., Talc, B. G. P., & Tin, C. I. P. (2013) Mineral Commodity Summaries. U.S. Geological Survey, Reston, VA, USA.
Smith, I. C., Carson, B. L., and Hoffmeister, F. (1978) Trace Metals in the Environment, Vol. 5. Ann Arbor Scientific Publications, Ann Arbor.
Socolof, M. L., Overly, J. G., & Geibig, J. R. (2005) Environmental life-cycle impacts of CRT and LCD desktop computer displays. Journal of Cleaner Production, 13, 1281-1294.
Stellman, J.M. (1998) Gallium. In: Encyclopaedia of Occupational Health and Safety, Vol. III, 4th Ed., Metals: Chemical Properties and Toxicity, Nordberg, G. (Ed.). International Labour Organisation, Geneva, pp. 17 (Chapter 63)
Sturgill, J. A., Swartzbaugh, J. T., & Randall, P. M. (2000) Pollution prevention in the semiconductor industry through recovery and recycling of gallium and arsenic from GaAs polishing wastes. Clean Technologies and Environmental Policy, 2, 18-27.
Swati, L., Meyyappan, R. M., & Varadharaj, A. (1996) Gallium recovery–technological alternatives. Bulletin of Electrochemistry, 12, 342-345.
Syu, C. H., Chien, P. H., Huang, C. C., Jiang, P. Y., Juang, K. W., & Lee, D. Y. (2017) The growth and uptake of Ga and In of rice (Oryza sative L.) seedlings as affected by Ga and In concentrations in hydroponic cultures. Ecotoxicology and Environmental Safety, 135, 32-39.
Takeda, A., Kimura, K., & Yamasaki, S. I. (2004) Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma, 119, 291-307.
Tolcin, A.C., (2014a) Indium: statistics and information. U.S. Geological Survey Mineral Commodity Summary.
Tolcin, A.C., (2014b) 2012 minerals yearbook: indium (advanced release). U.S. Department of the Interior, U.S. Geological Survey.
Tyler, G. (2004) Ionic charge, radius, and potential control root/soil concentration ratios of fifty cationic elements in the organic horizon of a beech (Fagus sylvatica) forest podzol. Science of the Total Environment, 329, 231-239.
Tyler, G. (2005) Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. Forest Ecology and Management, 206, 167-177.
US. EPA. (2000) Aquatic toxicity information retrieval database (AQUIRE)
Venugopal, B., & Luckey, T. D. (1978) Metal toxicity in mammals. Volume 2. Chemical toxicity of metals and metalloids. Plenum Press, New York.
Wang, X., Lu, X., & Zhang, S. (2013) Study on the waste liquid crystal display treatment: Focus on the resource recovery. Journal of Hazardous Materials, 244, 342-347.
Webb, D. R., Wilson, S. E., & Carter, D. E. (1986) Comparative pulmonary toxicity of gallium arsenide, gallium (III) oxide, or arsenic (III) oxide intratracheally instilled into rats.Toxicology and Applied Pharmacology, 82, 405-416.
Wedepohl, K.H. (1978) Handbook of geochemistry. Springer-Verlag, Berlin-Heidelberg.
Welch S.A., Green E.G., Banfield J.F. (2004) Geochemistry and Biogeochemistry of Ga, Ge, and Ti during Weathering. Goldschmidt, Copenhagen.
Wells, N. (1968) Element composition of soils and plants, in Soils of New Zealand, Vol. 2. New Zealand Soil Bureau, Wellington.
Wheeler, D. M., & Power, I. L. (1995) Comparison of plant uptake and plant toxicity of various ions in wheat. Plant and Soil, 172, 167-173.
White, S. J. O., & Hemond, H. F. (2012) The anthrobiogeochemical cycle of indium: a review of the natural and anthropogenic cycling of indium in the environment. Critical Reviews in Environmental Science and Technology, 42, 155-186.
Wilson, S. A., Briggs, P. H., Mee, J. S., & Siems, D. F. (1994) Determination of thirty‐two major and trace elements in three nist soil srms using icp‐aes and wdxrf. Geostandards Newsletter, 18, 85-89.
Wood, S. A., & Samson, I. M. (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28, 57-102.
Wu, X., Wu, S., Qin, W., Ma, X., Niu, Y., Lai, S., & Ren, L. (2012) Reductive leaching of gallium from zinc residue. Hydrometallurgy, 113, 195-199.
Xu, K., Deng, T., Liu, J., & Peng, W. (2007) Study on the recovery of gallium from phosphorus flue dust by leaching with spent sulfuric acid solution and precipitation. Hydrometallurgy, 86, 172-177.
Xu, W. H., Huang, H., Wang, A. H., Xiong, Z. T., & Wang, Z. Y. (2006) Advance in studies on activation of heavy metal by root exudates and mechanism. Ecol Environ, 15, 184-189.
Yu, H. Y., Liu, C., Zhu, J., Li, F., Deng, D. M., Wang, Q., & Liu, C. (2016) Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environmental Pollution, 209, 38-45.
Yu, J. B., Dong, H. F., Wang, H. B., Chen, X. B., Xie, W. J., Mao, P. L., & Ma, X. M. (2011) Spatial distribution characteristics of metals in new-born coastal wetlands in the Yellow River Delta. Wetland Science, 9, 297-304.
Yu, H. S., & Liao, W. T. (2011) Gallium: environmental pollution and health effects. Encyclopedia of Environmental Health, Elsevier, Burlington.
Yu, X. Z., & Zhang, X. H. (2015) DNA-protein cross-links involved in growth inhibition of rice seedlings exposed to Ga. Environmental Science and Pollution Research, 22, 10830-10838.
Yu, X. Z., Feng, X. H., & Feng, Y. X. (2015) Phytotoxicity and transport of gallium (Ga) in rice seedlings for 2-day of exposure. Bulletin of environmental contamination and toxicology, 95, 122-125.
Zhao, Z., Yang, Y., Xiao, Y., & Fan, Y. (2012) Recovery of gallium from Bayer liquor: A review. Hydrometallurgy, 125, 115-124.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67473-
dc.description.abstract新興汙染物鎵跟銦被廣泛運用在半導體製造業和光電產業,而隨著環境中鎵與銦濃度的提高,人類可能經由食用作物暴露到鎵與銦,並造成健康上的危害,因此,本研究以盆栽試驗種植小麥幼苗,評估鎵與銦在不同土壤中小麥生長之影響,以及以不同化學抽出法調查鎵跟銦在不同土壤中之有效性。以平鎮系、仁德系和太康系土壤作為供試土壤,分別添加 50、100、200 與 400 mg kg-1 的鎵或銦後再種植小麥,選用品種台中選二號之小麥作為試驗材料,種植滿 50 天後採收。另以 0.02 M CaCl2、0.1 M HCl 和1 M HCl 溶液進行土壤有效性鎵與銦萃取,並與植體鎵、銦濃度作相關性分析。在土壤單一萃取實驗中發現,以 1 M 和 0.1 M 鹽酸萃取的土壤鎵與銦濃度與小麥根部鎵與銦濃度和總吸收量均呈顯著正相關,然而,0.02 M 氯化鈣萃取的土壤鎵與銦濃度與小麥根部鎵與銦濃度和總吸收量相關性較差,因此,以 1 M 和0.1 M 鹽酸萃取的土壤鎵與銦濃度較適合做為土壤有效性鎵與銦的萃取方法。小麥的盆栽試驗結果顯示,小麥幼苗會吸收鎵和銦,且兩元素能在植體內被運輸,但大部分累積於根部。在中鹼性土壤 (太康系和仁德系) 中,鎵不會對小麥幼苗造成毒害,隨著鎵處理濃度提高,小麥幼苗根部與地上部生質量以及株高與控制組相比沒有顯著差異。而在太康系和仁德系的銦處理中,則是觀察到與鎵處理相似的結果,然而,在部分銦處理中,小麥幼苗根部生質量比控制組顯著下降,代表銦對小麥根部會造成部分毒害,但對整體生長勢影響不大。而在富含鋁的平鎮系土壤中,小麥均受到嚴重的鋁毒害,但是,酸性氯化鎵與氯化銦的添加會導致土壤 pH 值下降,並導致土壤活性鋁濃度增加,造成小麥幼苗更嚴重的鋁毒害現象。zh_TW
dc.description.abstractEmerging contaminants gallium (Ga) and indium (In) are commonly used in semiconductor manufacturing industry and electro-optical industry. As the elevated concentrations of Ga and In in the environment, human beings might exposure to them via eating crops and caused health hazards. Therefore, pot experiments were conducted with wheat seedlings to assess the effects of Ga and In on the growth of wheat seedlings in various soil systems. Besides, the availability of Ga and In in different soils were investigated with different chemical extractants. Wheat seedlings (Triticum aestivum L.) were grown in three different soils spiked with 50, 100, 200 and 400 mg kg -1 of Ga or In, respectively. All wheat seedlings were harvested after 50 days. In addition, soil available gallium and indium were extracted with 0.02 M CaCl2, 0.1 M HCl and 1 M HCl, which later will compare with Ga and In concentrations and amount in plant tissues. In soil single extraction experiments, soil Ga and In concentrations extracted with 1 M and 0.1 M HCl have significant positive relationship with Ga and In concentrations and amount in wheat seedling roots. However, relationships between soil Ga and In concentrations extracted by 0.02 M CaCl2 and Ga and In concentrations and amount in wheat seedling roots are bad. Therefore, 1 M and 0.1 M HCl are better extractants to compare availability Ga or In in different soils. The pot experiments results revealed that wheat seedlings could absorb Ga and In, and transfer these two elements from root to shoot in the plant, but most of them were accumulated in root. In macro scale, gallium won’t cause toxic effects to wheat seedlings after 50 days exposure in neutral and alkaline soils (Taikang and Jente soils). No significant decrease in roots biomass, shoots biomass and shoot height was observed in wheat seedlings with increasing Ga concentrations. For the In treatment, we found the similar results as Ga treatment except for roots biomass in Taikang and Jente soils. Results indicated that the addition of In can cause little deleterious effects on roots of wheat seedlings. In aluminum rich Pinchen soils, the addition of acidic gallium chloride and indium chloride solution will decrease soil pH, and caused more serious aluminum toxicity to wheat seedlings.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:33:45Z (GMT). No. of bitstreams: 1
ntu-106-R04623014-1.pdf: 6165989 bytes, checksum: 69f4756bea0b84c48bcd6cbc4f252e7c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄
第一章續論..........................................1
1.1 鎵.............................................1
1.1.1 鎵的物理化學性質.............................1
1.1.2 鎵的地球化學分布...........................4
1.1.3 土壤中的鎵...........................6
1.1.4 鎵的生產與應用................................8
1.1.5 鎵的來源與汙染............................10
1.1.6 鎵對植物生長之影響...................12
1.1.7 鎵對人體和動物之影響...........................13
1.2 銦....................14
1.2.1 銦的物理化學性質................................14
1.2.2 銦的地球化學分布..................................16
1.2.3 土壤中的銦...................................17
1.2.4 銦的生產與應用......................19
1.2.5 銦的汙染.................................21
1.2.6 銦對植物生長之影響..............22
1.2.7 銦對人體和動物之影響..........23
1.3 研究動機與目的................................24
第二章、材料與方法.....................................25
2.1 供試土壤之採集................................25
2.1.1 太康土系(Tk) .......................25
2.1.2 仁德土系(Je).......................25
2.1.3 平鎮土系(Pc) .........................25
2.2 供試土壤基本性質分析....................26
2.2.1 土壤水分含量......................26
2.2.2 土壤 pH 值...........................26
2.2.3 土壤質地..................................26
2.2.4 土壤有機碳含量....................28
2.2.5 土壤陽離子交換容量...............28
2.2.6 土壤游離鐵鋁含量....................29
2.2.7 土壤無定型鐵鋁含量..................30
2.2.8 土壤重金屬與鎵、銦含量.............31
2.3 供試土壤添加鎵之處理......................31
2.4 供試土壤添加銦之處理....................31
2.5 供試土壤有效性鎵、銦和鋁含量分析.....................32
2.5.1 0.02 M CaCl2 萃取 ...................32
2.5.2 0.1 M HCl 萃取.......................32
2.5.3 1 M HCl 萃取..........................33
2.6 小麥幼苗生長之盆栽試驗..................33
2.6.1 供試小麥品種.........................33
2.6.2 小麥種子催芽.......................34
2.6.3 盆栽試驗..................................34
2.6.4 化肥的施用.............................35
2.6.5 小麥植體採收......................35
2.6.6 植體鎵、銦及其他營養元素含量分析....................36
2.7 統計分析..........................................36
第三章、結果與討論.................................39
3.1 供試土壤基本性質..........................39
3.2 鎵在土壤中之有效性........................41
3.2.1 以 0.02 M CaCl2(aq) 萃取之土壤鎵濃度..............41
3.2.2 以 1 M HCl(aq) 萃取之土壤鎵濃度..............43
3.2.3 以 0.1 M HCl(aq) 萃取之土壤鎵濃度...........45
3.2.4 小麥幼苗根部與地上部的鎵濃度.................47
3.2.5 小麥幼苗根部與地上部鎵總吸收量..............50
3.2.6 土壤單一萃取鎵濃度與小麥植體鎵濃度和鎵總吸收量之相關性分
析.....................................................53
3.3 鎵對小麥幼苗生長之影響.................56
3.3.1 小麥幼苗之生質量、株高與盆栽試驗生長情形........56
3.3.2 以 0.02 M CaCl2(aq) 萃取之土壤活性鋁濃度...........61
3.4 銦在土壤中之有效性................65
3.4.1 以 0.02 M CaCl2(aq) 萃取之土壤銦濃度..........65
3.4.2 以 1 M HCl(aq) 萃取之土壤銦濃度........67
3.4.3 以 0.1 M HCl(aq) 萃取之土壤銦濃度..........69
3.4.4 小麥幼苗根部與地上部的銦濃度...........71
3.4.5 小麥幼苗根部與地上部銦總吸收量...........74
3.4.6 土壤單一萃取銦濃度與小麥植體銦濃度和銦總吸收量之相關性分
析....................................................77
3.5 銦對小麥幼苗生長之影響..........80
3.5.1 小麥幼苗之生質量、株高與盆栽試驗生長情形...........80
3.5.2 以 0.02 M CaCl2(aq) 萃取之土壤活性鋁濃度..........85
3.6 鎵與銦之傳輸係數、毒性及其置換土壤活性鋁之綜合比較....89
第四章、結論.......................................91
第五章、參考文獻.......................................92
第六章、附錄...........................................105
圖目錄
圖 一、鎵在 25℃ 及不同 pH 值下之物種分布 ......... 3
圖 二、2011 年鎵的全球物質流動分析 ......... 9
圖 三、銦在 25℃ 及不同 pH 值下之物種分布 ........ 15
圖 四、2011 年銦的全球物質流動分析 .................... 20
圖 五、土壤質地三角圖 ....... 27
圖 六、以0.02 M CaCl2 溶液萃取的土壤鎵濃度 (a)太康系 (b)仁德系 (c)平鎮系 ......................... 42
圖 七、以 1 M HCl 溶液萃取的土壤鎵濃度 (a)太康系 (b)仁德系 (c)平鎮系 ............................... 44
圖 八、以 0.1 M HCl 溶液萃取的土壤鎵濃度 (a)太康系 (b)仁德系 (c)平鎮系 ............................ 46
圖 九、鎵處理小麥幼苗根部鎵濃度 (a)太康系 (b)仁德系 (c)平鎮系 ............................................ 48
圖 十、鎵處理小麥幼苗地上部鎵濃度 (a)太康系 (b)仁德系 (c)平鎮系 ........................................ 49
圖 十一、鎵處理小麥幼苗根部鎵總吸收量 (a)太康系 (b)仁德系 (c)平鎮系 ................................ 51
圖 十二、鎵處理小麥幼苗地上部鎵總吸收量 (a)太康系 (b)仁德系 (c)平鎮系 ............................ 52
圖 十三、小麥植體 (a)根部 (b)地上部鎵含量與 0.02M CaCl2, 1M HCl 以及0.1M HCl 萃取的土壤鎵含量之相關性...... 54
圖 十四、小麥植體 (a)根部 (b)地上部鎵總吸收量與 0.02M CaCl2, 1M HCl 以及0.1M HCl 萃取的土壤鎵含量之相關性 ... 55
圖 十五、鎵處理中小麥幼苗根部與地上部生質量 (a)太康系 (b)仁德系 (c)平鎮系 .................... 58
圖 十六、鎵處理中小麥幼苗地上部株高 (a)太康系 (b)仁德系 (c)平鎮系 .................................... 59
圖 十七、鎵處理中小麥幼苗種植 50 天後盆栽試驗生長情形 (a)太康系 (b)仁德系 (c)平鎮系 60
圖 十八、以0.02 M CaCl2 溶液萃取的土壤鋁濃度 (a)太康系 (b)仁德系 (c)平鎮系...................... 62
圖 十九、鎵處理中平鎮系小麥幼苗種植 50 天後根部生長情形 ................................................... 64
圖 二十、以0.02 M CaCl2 溶液萃取的土壤銦濃度 (a)太康系 (b)仁德系 (c)平鎮系...................... 66
圖 二十一、以 1 M HCl 溶液萃取的土壤銦濃度 (a)太康系 (b)仁德系 (c)平鎮系 ....................... 68
圖 二十二、以 0.1 M HCl 溶液萃取的土壤銦濃度 (a)太康系 (b)仁德系 (c)平鎮系 .................... 70
圖 二十三、銦處理小麥幼苗根部銦濃度 (a)太康系 (b)仁德系 (c)平鎮系 .................................... 72
圖 二十四、銦處理小麥幼苗地上部銦濃度 (a)太康系 (b)仁德系 (c)平鎮系 ................................ 73
圖 二十五、銦處理小麥幼苗根部銦總吸收量 (a)太康系 (b)仁德系 (c)平鎮系 ............................ 75
圖 二十六、銦處理小麥幼苗地上部銦總吸收量 (a)太康系 (b)仁德系 (c)平鎮系 ........................ 76
圖 二十七、小麥植體 (a)根部 (b)地上部銦含量與0.02M CaCl2, 1M HCl 以及0.1M HCl 萃取的土壤銦含量之相關性......... 78
圖 二十八、小麥植體 (a)根部 (b)地上部銦總吸收量與0.02M CaCl2, 1M HCl 以及0.1M HCl 萃取的土壤銦含量之相關性 ....................... 79
圖 二十九、銦處理中小麥幼苗根部與地上部生質量 (a)太康系 (b)仁德系 (c)平鎮系 ................ 82
圖 三十、銦處理中小麥幼苗地上部株高 (a)太康系 (b)仁德系 (c)平鎮系 .................................... 83
圖 三十一、銦處理中小麥幼苗種植 50 天後盆栽試驗生長情形 (a)太康系 (b)仁德系 (c)平鎮系............................ 84
圖 三十二、以0.02 M CaCl2 溶液萃取的土壤鋁濃度 (a)太康系 (b)仁德系 (c)平鎮系.................. 86
圖 三十三、銦處理中平鎮系小麥幼苗種植 50 天後根部生長情形 ............................................... 88
表目錄
表一、IIIA 族元素之基本性質 ............................................................................................................... 2
表 二、IIIA 族元素在母岩和土壤中的含量 ......................................................................................... 5
表 三、不同國家之土壤鎵背景濃度 .................................................................................................... 7
表 四、2001 年丹麥部分廢棄物中鎵與銦之含量 ............................................................................. 11
表 五、不同國家之土壤銦背景濃度 .................................................................................................. 18
表 六、本試驗小麥生長期氮磷鉀肥施用時間與百分比 ................................................................... 35
表 七、感應耦合電漿原子發射光譜儀分析鎵、銦與鋁之測定條件參數 ....................................... 37
表 八、感應耦合電漿質譜分析儀測定鎵、銦與鋁之條件參數 ....................................................... 38
表 九、試驗土壤之基本特性 .............................................................................................................. 40
表 十、以0.02 M CaCl2 溶液萃取的土壤活性鋁濃度分級 ................................................................ 63
表 十一、鎵處理平鎮系土壤pH 值 .................................................................................................... 63
表 十二、銦處理平鎮系土壤pH 值 .................................................................................................... 87
表 十三、不同鎵與銦處理中鎵與銦的傳輸系數 .............................................................................. 90
dc.language.isozh-TW
dc.title鎵與銦在土壤中之有效性及其對小麥幼苗生長之影響zh_TW
dc.titleThe availability of gallium and indium in soils and their
effects on the growth of wheat seedlings (Triticum
aestivum L.)
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳尊賢,王尚禮,莊愷瑋,劉雨庭
dc.subject.keyword新興汙染物,鎵,銦,小麥幼苗,zh_TW
dc.subject.keywordEmerging contaminants,gallium,indium,wheat seedlings,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201702311
dc.rights.note有償授權
dc.date.accepted2017-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
6.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved