請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67461完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁宗蘇(Tzung-Su Ding) | |
| dc.contributor.author | Chia-Chi Lin | en |
| dc.contributor.author | 林佳祈 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:33:14Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 陳宛均、羅祈鈞、蔡富安、張安瑜(2020)運用開放資料建置臺灣陸域環境因子多時序資料集。台灣生物多樣性研究22: 13-44 陳國彥(1985)金門的氣候。國立臺灣師範大學地理研究報告11: 187-198 楊玉祥、丁宗蘇、吳森雄、吳建龍、阮錦松、林瑞興、蔡乙榮(2020)2020年臺灣鳥類名錄。中華民國野鳥學會。 劉小如(2004)「金門佛法僧目鳥類調查」-金門佛法僧目鳥類分佈及其他鳥類生態調查。內政部營建署金門國家公園管理處。 謝承恩(2019)山麻雀物種分布模式。國立臺灣大學生態學與演化生物學研究所碩士論文。 Adhikari, D., Barik, S.K., Upadhaya, K., 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40: 37-43. Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43: 1223-1232. Amano, T., Lamming, J.D., Sutherland, W.J., 2016. Spatial gaps in global biodiversity information and the role of citizen science. BioScience, 66: 393-400. Anderson, O.F., Guinotte, J.M., Rowden, A.A., Clark, M.R., Mormede, S., Davies, A.J., Bowden, D.A., 2016. Field validation of habitat suitability models for vulnerable marine ecosystems in the South Pacific Ocean: implications for the use of broad-scale models in fisheries management. Ocean Coastal Management, 120: 110-126. Araújo, M.B., Guisan, A., 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33: 1677-1688. Araújo, M.B., Pearson, R.G., Thuiller, W., Erhard, M., 2005. Validation of species–climate impact models under climate change. Global Change Biology, 11: 1504-1513. Araújo, M.B., Thuiller, W., Williams, P.H., Reginster, I., 2005. Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecology and Biogeography, 14: 17-30. Austin, M., 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling, 200: 1-19. Bean, W.T., Stafford, R., Brashares, J.S., 2012. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography, 35: 250-258. Beck, J., Böller, M., Erhardt, A., Schwanghart, W., 2014. Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecological Informatics, 19: 10-15. Bird, T.J., Bates, A.E., Lefcheck, J.S., Hill, N.A., Thomson, R.J., Edgar, G.J., Stuart-Smith, R.D., Wotherspoon, S., Krkosek, M., Stuart-Smith, J.F., Pecl, G.T., Barrett, N., Frusher, S., 2014. Statistical solutions for error and bias in global citizen science datasets. Biological Conservation, 173: 144-154. Bloom, T.D., Flower, A., DeChaine, E.G., 2018. Why georeferencing matters: Introducing a practical protocol to prepare species occurrence records for spatial analysis. Ecology and Evolution, 8: 765-777. Bonney, R., Cooper, C.B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K.V., Shirk, J., 2009. Citizen science: a developing tool for expanding science knowledge and scientific literacy. BioScience, 59: 977-984. Braunisch, V., Suchant, R., 2010. Predicting species distributions based on incomplete survey data: the trade‐off between precision and scale. Ecography, 33: 826-840. Brook, B.W., Sodhi, N.S., Bradshaw, C.J., 2008. Synergies among extinction drivers under global change. Trends in Ecology and Evolution, 23: 453-460. Butchart, S.H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J.P., Almond, R.E., Baillie, J.E., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, J., Chenery, A.M., Csirke, J., Davidson, N.C., Dentener, N.C., Foster, M., Galli, A., Galloway, J.N., Genovesi, P., Gregory, R.D., Hockings, M., Kapos, W., Lamarque, J.F., Leverington, F., Loh, J., McGeoch, M.A., McRae, L., Minasyan, A., Morcillo, M.H., Oldfield, T.E., Pauly, D., Quader, S., Revenga, C., Sauer, J.R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S.N., Symes, A., Tierney, M., Tyrrell, T.D., Vié, J.C., Watson R., 2010. Global biodiversity: indicators of recent declines. Science, 328: 1164-1168. Callaghan, C.T., Martin, J.M., Major, R.E., Kingsford, R.T., 2018. Avian monitoring–comparing structured and unstructured citizen science. Wildlife Research, 45: 176-184. Chandler, M., See, L., Copas, K., Bonde, A.M., López, B.C., Danielsen, F., Legind, J.K., Masinde, S., Miller‐Rushing, A.J., Newman, G., Rosemartin, A., 2017. Contribution of citizen science towards international biodiversity monitoring. Biological Conservation, 213: 280-294. Chapman, D.S., Makra, L., Albertini, R., Bonini, M., Páldy, A., Rodinkova, V., Šikoparija, B., Weryszko‐Chmielewska, E., Bullock, J.M., 2016. Modelling the introduction and spread of non‐native species: International trade and climate change drive ragweed invasion. Global Change Biology, 22: 3067-3079. Chatfield C., 1995. Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society Series A, 158: 419–466. Costa, G.C., Nogueira, C., Machado, R.B., Colli, G.R., 2010. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodiversity and Conservation, 19: 883-899. Coxen, C.L., Frey, J.K., Carleton, S.A., Collins, D.P., 2017. Species distribution models for a migratory bird based on citizen science and satellite tracking data. Global Ecology and Conservation, 11: 298-311. Dickinson, J.L., Zuckerberg, B., Bonter, D.N., 2010. Citizen science as an ecological research tool: Challenges and benefits. Annual Review of Ecology, Evolution, and Systematics, 41: 149-172. Doherty, T.S., Glen, A.S., Nimmo, D.G., Ritchie, E.G., Dickman, C.R., 2016. Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences, 113: 11261-11265. Duputié, A., Zimmermann, N.E., Chuine, I., 2014. Where are the wild things? Why we need better data on species distribution. Global Ecology and Biogeography, 23: 457-467. eBird Basic Dataset, 2020. eBird Basic Dataset Version: EBD_relJan-2020. Cornell Lab of Ornithology. (accessed 14 February 2020). Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40: 677-697. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A.T., Phillips, S.J., Richardson, K.S., Scachetti‐Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S., Zimmermann, N.E., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17: 43-57. Engler, J.O., Stiels, D., Schidelko, K., Strubbe, D., Quillfeldt, P., Brambilla, M., 2017. Avian SDMs: current state, challenges, and opportunities. Journal of Avian Biology, 48: 1483-1504. ESRI, 2016. ArcGIS desktop: release 10.4.1. Redlands, CA: Environmental Systems Research Institute. Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34: 487-515. Farmer, R.G., Leonard, M.L., Horn, A.G., 2012. Observer effects and avian-call-count survey quality: rare-species biases and overconfidence. The Auk, 129: 76-86. Feeley, K.J., Silman, M.R., 2011. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Diversity and Distributions, 17: 1132-1140. Feria, T.P., Peterson, A.T., 2002. Prediction of bird community composition based on point‐occurrence data and inferential algorithms: a valuable tool in biodiversity assessments. Diversity and Distributions, 8: 49-56. Fick, S.E., Hijmans, R.J., 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315. Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 38-49. Fois, M., Cuena-Lombraña, A., Fenu, G., Bacchetta, G., 2018. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecological Modelling, 385: 124-132. Fourcade, Y., Engler, J.O., Rödder, D., Secondi, J., 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PloS One, 9: e97122. Gábor, L., Moudrý, V., Lecours, V., Malavasi, M., Barták, V., Fogl, M., Šímová, P., Rocchini, D., Václavík, T., 2020. The effect of positional error on fine scale species distribution models increases for specialist species. Ecography, 43: 256-269. Graham, C.H, Elith, J, Hijmans, R.J., 2008. The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45: 239-247. Graham, C.H., Ferrier, S., Huettman, F., Moritz, C., Peterson, A.T., 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution, 19: 497-503. Guillera‐Arroita, G., 2017. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography, 40: 281-295. Guisan, A., Graham, C.H., Elith, J., Huettmann, F., NCEAS Species Distribution Modelling Group., 2007. Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13: 332-340. Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models? Ecology Letters, 8: 993-1009. Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis‐Lewis, I., Sutcliffe, P.R., Tulloch, A.I., Regan, T.J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P., Buckley, Y.M., 2013. Predicting species distributions for conservation decisions. Ecology Letters, 16: 1424-1435. Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135: 147-186. Hernandez, P.A., Graham, C.H., Master, L.L., Albert, D.L., 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29: 773-785. Hijmans, R.J., Phillips, S.J., Leathwick, J., Elith, J., 2017. dismo: Species Distribution Modeling (version 1.1-4) [Software]. Available online at https://cran. r-project. org/package= dismo. Hochachka, W.M., Fink, D., Hutchinson, R.A., Sheldon, D., Wong, W.K., Kelling, S., 2012. Data-intensive science applied to broad-scale citizen science. Trends in Ecology and Evolution, 27: 130-137. Jetz, W., McPherson, J.M., Guralnick, R.P., 2012. Integrating biodiversity distribution knowledge: toward a global map of life. Trends in Ecology and Evolution, 27: 151-159. Jiménez-Valverde, A., Lobo, J.M., Hortal, J., 2009. The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecology, 10: 196-205. Johnston, A., Moran, N., Musgrove, A., Fink, D., Baillie, S.R., 2020. Estimating species distributions from spatially biased citizen science data. Ecological Modelling, 422, 108927. Kamp, J., Oppel, S., Heldbjerg, H., Nyegaard, T., Donald, P.F., 2016. Unstructured citizen science data fail to detect long‐term population declines of common birds in Denmark. Diversity and Distributions, 22: 1024-1035. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P, Kessler, M., 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4: 170122. Kelling, S., Fink, D., La Sorte, F.A., Johnston, A., Bruns, N.E., Hochachka, W.M., 2015. Taking a ‘Big Data’approach to data quality in a citizen science project. AMBIO, 44: 601-611. Ko, C.Y., Root, T.L., Lin, S.H., Schneider, S.H., Lee, P.F., 2012. Global change projections for Taiwan island birds: linking current and future distributions. Nature Conservation, 2: 21. Kosmala, M., Wiggins, A., Swanson, A., Simmons, B., 2016. Assessing data quality in citizen science. Frontiers in Ecology and the Environment, 14: 551-560. Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometrics, 33: 159-174. Li, H., Reynolds, J.F., 1994. A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology, 75: 2446-2455. Lillesand, T.M., Kiefer, R.W., Chipman J., 2000. Remote sensing and image analysis. John Wiley Sons Inc., New York. Lloyd, T.J., Fuller, R.A., Oliver, J.L., Tulloch, A., Barnes, M., Steven, R., 2020. Estimating the spatial coverage of citizen science for monitoring threatened species. Global Ecology and Conservation, 23: e01048. Lobo, J.M., Jiménez‐Valverde, A., Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17: 145-151. Lütolf, M., Kienast, F., Guisan, A., 2006. The ghost of past species occurrence: improving species distribution models for presence‐only data. Journal of Applied Ecology, 43: 802-815. Machado, A., 2004. An index of naturalness. Journal for Nature Conservation, 12: 95-110. Mateo, R.G., Felicísimo, Á.M., Munoz, J., 2010. Effects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneity. Journal of Vegetation Science, 21: 908-922. Mateo, R.G., Gastón, A., Aroca-Fernández, M.J., Saura, S., García-Viñas, J.I., 2018. Optimization of forest sampling strategies for woody plant species distribution modelling at the landscape scale. Forest Ecology and Management, 410: 104-113. McGarigal, K., Marks, B.J., 1995. FRAGSTATS: spatial analysis program for quantifying landscape structure. USDA Forest Service General Technical Report PNW-GTR-351. McPherson, J.M., Jetz, W., Rogers, D.J., 2004. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? Journal of Applied Ecology, 41: 811-823. McPherson, M.J., Jetz, W., 2007. Effects of species’ ecology on the accuracy of distribution models. Ecography, 30: 135-151. Merow, C., Smith, M.J., Silander Jr, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36: 1058-1069. Mitchell, M.G., Bennett, E.M., Gonzalez, A., 2013. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems, 16: 894-908. Moradi, S., Ilanloo, S.S., Kafash, A., Yousefi, M., 2019. Identifying high-priority conservation areas for avian biodiversity using species distribution modeling. Ecological Indicators, 97: 159-164. Moudrý, V., Šímová, P., 2012. Influence of positional accuracy, sample size and scale on modelling species distributions: a review. International Journal of Geographical Information Science, 26: 2083-2095. Munson, M.A., Caruana, R., Fink, D., Hochachka, W.M., Iliff, M., Rosenberg, K.V., Sheldon, D., Sullivan, B.L., Wood, C., Kelling, S., 2010. A method for measuring the relative information content of data from different monitoring protocols. Methods in Ecology and Evolution, 1: 263-273. Naimi, B., Hamm, N.A., Groen, T.A., Skidmore, A.K., Toxopeus, A.G., 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography, 37: 191-203. Naimi, B., Skidmore, A.K., Groen, T.A., Hamm, N.A., 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. Journal of Biogeography, 38: 1497-1509. NASA/METI/AIST/Japan Spacesystems, U.S./Japan ASTER Science Team, 2019. ASTER Global Digital Elevation Model V003, distributed by NASA EOSDIS Land Processes DAAC. Available online at https://doi.org/10.5067/ASTER/ASTGTM.003 (accessed 22 September 2019). Newbold, T., 2010. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progress in Physical Geography, 34: 3-22. Newbold, T., 2018. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society B: Biological Sciences, 285: 20180792. Newbold, T., Reader, T., El‐Gabbas, A., Berg, W., Shohdi, W.M., Zalat, S., Baha El Din, S., Gilbert, F., 2010. Testing the accuracy of species distribution models using species records from a new field survey. Oikos, 119: 1326-1334. Norris, D., 2014. Model thresholds are more important than presence location type: Understanding the distribution of lowland tapir (Tapirus terrestris) in a continuous Atlantic forest of southeast Brazil. Tropical Conservation Science, 7: 529-547. OpenStreetMap, 2019. Available online at https://planet.openstreetmap.org (accessed 12 August 2019). Ortega‐Huerta, M.A., Vega‐Rivera, J.H., 2017. Validating distribution models for twelve endemic bird species of tropical dry forest in western Mexico. Ecology and Evolution, 7: 7672-7686. Pearce, J.L., Ferrier, S., 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133: 225-245. Pearson, R.G., Raxworthy, C.J., Nakamura, M., Townsend Peterson, A., 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34: 102-117. Pecchi, M., Marchi, M., Burton, V., Giannetti, F., Moriondo, M., Bernetti, I., Bindi, M., Chirici, G., 2019. Species distribution modelling to support forest management. A literature review. Ecological Modelling, 411: 108817. Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S., 2009. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecological Applications, 19: 181-197. Phillips, S.J., Anderson, R.P., Schapired R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231-259. Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31: 61-175. Phillips, S.J., Dudík, M., Schapire, R.E., 2018. Maxent software for modeling species niches and distributions (Version 3.4.1). Available online at http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed 18 October 2018). Pimm, S.L., Jenkins, C.N., Abell, R.T., Brooks, M., Gittleman, J.L., Joppa, L.N., Raven, P.H., Roberts, C.M., Sexton, J.O., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344: 1246752. QGIS Development Team, 2018. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online at http://qgis.osgeo.org R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/. Rabe-Hesketh, S., Pickles, A., Skrondal, A., 2003. Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. Statistical Modelling, 3: 215-232. Rebelo, H., Jones, G., 2010. Ground validation of presence‐only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). Journal of Applied Ecology, 47: 410-420. Reside, A.E., Watson, I., VanDerWal, J., Kutt, A.S., 2011. Incorporating low-resolution historic species location data decreases performance of distribution models. Ecological Modelling, 222: 3444-3448. Searcy, C.A., Shaffer, H.B., 2014. Field validation supports novel niche modeling strategies in a cryptic endangered amphibian. Ecography, 37: 983-992. Silvertown, J., 2009. A new dawn for citizen science. Trends in Ecology and Evolution, 24: 467-471 Snäll, T., Kindvall, O., Nilsson, J., Pärt, T., 2011. Evaluating citizen-based presence data for bird monitoring. Biological Conservation, 144: 804-810. Steen, V.A., Elphick, C.S., Tingley, M.W., 2019. An evaluation of stringent filtering to improve species distribution models from citizen science data. Diversity and Distribution, 25: 1857-1869. Stockwell, D.R., Peterson, A.T., 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148: 1-13. Strimas-Mackey, M., Hochachka, W.M., Ruiz-Gutierrez, V., Robinson, O.J., Miller, E.T., Auer, T., Kelling, S., Fink, D., Johnston, A., 2020. Best Practices for Using eBird Data. Version 1.0. Cornell Lab of Ornithology, Ithaca, New York. Available online at https://cornelllabofornithology.github.io/ebird-best-practices/. Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D., Kelling, S., 2009. eBird: A citizen-based bird observation network in the biological sciences. Biological Conservation, 142: 2282-2292. Sullivan, B.L., Aycrigg, J.L., Barry, J.H., Bonney, R.E., Bruns, N., Cooper, C.B., Damoulas, T., Dhondt, A.A., Dietterich, T., Farnsworth, A., Fink, D., Fitzpatrick, J.W., Fredericks, T., Gerbracht, J., Gomes, C., Hochachka, W.M., Iliff, M.J., Lagoze, C., La Sorte, F.A., Merrifield, M., Morris, W., Phillips, T.B., Reynolds, M., Rodewald, A.D., Rosenberg, K.V., Trautmann, N.M., Wiggins, A., Winkler, D.W., Wong, W.-K., Wood, C.L., Yu, J., Kelling, S., 2014. The eBird enterprise: an integrated approach to development and application of citizen science. Biological Conservation, 169: 31-40. Syfert, M.M., Smith, M.J., Coomes, D.A., 2013. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PloS One 8, e55158. Tabet, S., Belhemra, M., Francois, L., Arar, A., 2018. Evaluation by prediction of the natural range shrinkage of Quercus ilex L. in eastern Algeria. Istanbul Üniversitesi Orman Fakültesi Dergisi, 68: 7-15. van Proosdij, A.S., Sosef, M.S., Wieringa, J.J., Raes, N., 2016. Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39: 542-552. Veloz, S.D., 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence‐only niche models. Journal of Biogeography, 36: 2290-2299. Walker, J., Taylor, P., 2017. Using eBird data to model population change of migratory bird species. Avian Conservation and Ecology, 12: 4. West, A.M., Kumar, S., Brown, C.S., Stohlgren, T.J., Bromberg, J., 2016. Field validation of an invasive species Maxent model. Ecological Informatics, 36: 126-134. Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A., NCEAS Predicting Species Distributions Working Group, 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14: 763-773. Wu, T.Y., Walther, B.A., Chen, Y.H., Lin, R.S., Lee, P.F., 2013. Hotspot analysis of Taiwanese breeding birds to determine gaps in the protected area network. Zoological Studies, 52: 29. Young, B.E., Dodge, N., Hunt, P.D., Ormes, M., Schlesinger, M.D., Shaw, H.Y., 2019. Using citizen science data to support conservation in environmental regulatory contexts. Biological Conservation, 237: 57-62. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67461 | - |
| dc.description.abstract | 物種分布模式為現今保育研究中的重要工具。近年來公民科學資料蓬勃發展,集結公眾之力蒐集物種分布資訊,相較傳統調查能耗費較低成本蒐集更大量的資料,但許多研究者對公民科學的資料品質及其可應用性存有疑慮。本文比較系統性調查資料以及公民科學資料應用於最大熵物種分布模式之差異,並評估eBird公民科學資料未來應用在物種分布模式之可行性,以提供未來公民科學資料用於分布預測之建議。系統性調查資料所提供的資料量較少,但是空間解析度較高且資料品質較為一致;eBird資料量大,但是紀錄資料的努力量以及不同紀錄點位的空間解析度差異很大,易使模式表現產生偏差。為比較資料量或空間解析度造成不同資料集間的模式表現差異,本研究除了比較系統性調查資料與eBird整體資料的模式表現,另外也篩選一筆空間解析度較高的eBird資料,比較提高紀錄點位空間解析度的模式表現差異;以及在與系統性調查資料相同樣本數的基準下,將eBird資料重新取樣後一併比較。本文以金門為研究範圍,使用2018年上述四組不同資料集,建構66種鳥種的最大熵模型,並比較不同資料集模式的AUC、預測出現機率值與預測出現網格數的差異。除此之外,也蒐集一筆獨立調查資料,以模式預測結果與實際野外調查物種是否有出現,計算Kappa值、精確率與正確率以比較不同資料集的模式預測表現。另外也將鳥種依據水鳥/陸鳥、普遍/不普遍、留/候鳥分組,比較不同鳥種分組之預測表現差異。結果顯示系統性調查資料在AUC、精確率與正確率的表現較eBird資料佳,而eBird資料在預測出現機率值與預測出現網格數、Kappa值較系統性調查資料高;鳥類分組的比較,在棲地專一性高的鳥種分組AUC表現較佳,預測出現範圍較小。eBird能提供大量資料及其紀錄地點廣布在研究區域內,是eBird資料表現較佳的優勢,而系統性調查資料因其調查樣區空間解析度高使得其預測的表現較佳。本研究結果顯示eBird資料應用於物種分布模式有不錯的預測表現,將不精確的空間紀錄篩選過後的eBird資料,會使模式預測表現更佳。因此,本文建議未來使用eBird資料運用於物種分布模式時,在資料前處理時能先剔除不夠精確的地點以及不確定性高的資料,能讓模式有較佳的表現。 | zh_TW |
| dc.description.abstract | Species distribution model (SDM) has become an important tool in conservation biology. In recent decades, the amount of citizen science data has accumulated rapidly. Comparing to systematic data collected from traditional surveys, citizen science data are contributed by many volunteers and could collect huge data in an efficient and budget way. However, systematic data tend to have higher data quality and finer spatial resolution than citizen science data. This study compared the performance of Maximum Entropy models (MaxEnt) between the systematic data and eBird data in Kinmen collected in 2018. The distribution of 66 bird species was predicted with MaxEnt model by using 4 types of datasets, including 1 systematic survey dataset and 3 eBird datasets. eBird culled data, which selected complete eBird checklists with finer spatial resolution obtained with shorter survy distances to test whether the spatial resolution of input data would impact model performance. In order to balance the sample size between eBird data and systematic data, eBird data were randomly sampled with the same data size of systematic data. In addition, this study collected independent field survey data to validate the model performance and compare model performance with three bird groups. The results showed that the systematic data performed better than eBird data in the AUC, precision, and accuracy of predicted distribution, while the eBird data showed better performance in predicted presence probability mean, predicted presence grids, and Kappa statistics due to its larger datasets and greater investigated area. The model performance of habitat specialists was better than that of habitat generalists and the predicted presence range of habitat generalists was larger than that of habitat specialists. The model performance of eBird data was good enough and can be even better when adapting the data with finer spatial resolution. The study suggests that one should remove inaccurate or spatial imprecise data before applying eBird data in species distribution modelling in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:33:14Z (GMT). No. of bitstreams: 1 U0001-1508202019065800.pdf: 23402977 bytes, checksum: ef8ba3a6387165adf115efa3fac1f9c5 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 謝誌 i 摘要 ii Abstract iv 目錄 vi 前言 1 材料方法 7 一、 研究範圍 7 二、 物種出現資料 7 三、 環境因子 9 四、 物種分布模式 12 五、 驗證資料集 13 六、 資料分析 13 結果 16 一、 系統性調查與eBird資料集在鳥種與紀錄努力量差異 16 二、 比較不同資料集模式評估AUC、預測網格數與預測機率值平均 17 三、 以獨立野外調查資料評估模式結果,比較不同資料集預測差異 19 四、 比較不同鳥類分群在相同資料集中模式評估表現差異 22 討論 26 一、 eBird大量資料的優勢以及樣本數對模式影響 26 二、 空間精確度高的紀錄資料之模式表現 29 三、 不同鳥類分群模式表現 31 四、 使用資料切分方式與獨立調查資料驗證模式結果比較 33 五、 eBird是否可取代系統性調查資料 35 六、 建議未來應用eBird資料使用前的篩選建議 37 結論 40 參考文獻 41 圖 52 表 57 附錄 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 眾包資料 | zh_TW |
| dc.subject | 生態棲位模式 | zh_TW |
| dc.subject | 最大熵模型 | zh_TW |
| dc.subject | 樣本數 | zh_TW |
| dc.subject | 野外驗證 | zh_TW |
| dc.subject | field validation | en |
| dc.subject | ecological niche models | en |
| dc.subject | MaxEnt | en |
| dc.subject | sample size | en |
| dc.subject | crowdsourced data | en |
| dc.title | 比較系統性調查與公民科學資料於鳥類物種分布模式之表現差異 | zh_TW |
| dc.title | Comparing the Differences of Avian Species Distribution Modelling Performance between Systematic Survey Data and Citizen Science Data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李培芬(Pei-Fen Lee),林瑞興(Ruey-Shing Lin),蔡若詩(Jo-Szu Tsai) | |
| dc.subject.keyword | 眾包資料,生態棲位模式,最大熵模型,樣本數,野外驗證, | zh_TW |
| dc.subject.keyword | crowdsourced data,ecological niche models,MaxEnt,sample size,field validation, | en |
| dc.relation.page | 149 | |
| dc.identifier.doi | 10.6342/NTU202003534 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1508202019065800.pdf 未授權公開取用 | 22.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
