請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67450完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林書妍(Shu-Yen Lin) | |
| dc.contributor.author | Ya-Hsin Hsiao | en |
| dc.contributor.author | 蕭雅馨 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:32:44Z | - |
| dc.date.available | 2022-08-01 | |
| dc.date.copyright | 2020-09-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 孔祥瑞、王讓劍、楊軍、郭吉春. 2013. 白茶感官品質與化學成分的相關和通徑分析. 熱帶作物學報 34:2014-2017. 王贊、郭雅玲. 2017. 做青工藝對烏龍茶特徵香氣成分影響的研究進展. 食品安全品質檢測學報 8:1603-1609. 甘子能. 1984. 茶葉化學入門 . 台灣省茶葉改良場林口分場. 臺北. 行政院農委會. 2018. 農業統計年報. 農業統計資料查詢. <https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx> 2020/06/25. 何華鋒、朱宏凱、董春旺、葉陽、桂安輝、高明珠. 2015. 黑茶香氣化學研究進展. 茶葉科學 35:121-129. 宛曉春. 2003. 茶葉中的化學成分及其性質, p. 9-30. 茶葉生物化學. 中國農業出版社. 北京. 松井陽吉. 2000. 茶系飲料について ウーロン茶の魅力. 日本食生活學會誌 11:2-15. 林宜昕. 2008. 不同採摘葉位、時期及品種(系)對茶樹多元酚含量之影響. 國立嘉義大學農學研究所碩士論文. 嘉義. 林書妍. 2013. 部分發酵茶茶菁、製程及成茶中可溶性化學成分與揮發性有機化合物之研究. 國立臺灣大學園藝暨景觀學系博士論文. 臺北. 林真如. 2011. 紫外線對茶樹葉片中兒茶素含量之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 林馥泉. 1956. 包種茶之粗製, p. 109-129. 刊於:林馥泉主編. 烏龍茶及包種茶製作學. 大同書局. 臺北. 徐鈺雯、陳盈如、吳金村、張上鎮. 2006. 固相微萃取技術應用於植物揮發成分之分析. 中華林學季刊 39:279-292. 張啟筠. 2007. 紅酒香氣輪廓分析方法之建立. 輔仁大學碩士論文. 新北. 陳羿儒. 2015. 仙草與仙草萃取液揮發性香氣成分之研究. 中國醫藥大學碩士論文. 臺中. 陳英玲. 1995. 不同茶樹品種多酚酶活性及其在製茶過程中之變化. 農特產品加工研討會專刊. 臺灣省農業試驗所編印. p. 111-119. 鄭鵬程、甯井銘、趙常銳、方世輝、夏濤. 2009. 不同搖青工藝對烏龍茶品質的影響. 安徽農業大學學報 36:110-115. 蔡志賢. 2002. 包種茶萎凋與攪拌製程中茶菁之生理變化與利用生物電子鼻監測之可行性探討. 國立臺灣大學園藝暨景觀學系博士論文. 臺北. 謝運海、鄭德勇、葉乃興、金珊、曾璞玉. 2016. 漳平水仙茶加工過程中香氣前體含量的變化. 茶葉科學 36:11-17. Alasalvar, C., B. Topal, A. Serpen, B. Bahar, E. Pelvan, and V. Gökmen. 2012. Flavor characteristics of seven grades of black tea produced in Turkey. J. Agr. Food Chem. 60:6323. Ansari Hojjat, R., M. Asil Hassanpour, B. Rabiei, and A. Dadashpour. 2011. Impacts of flushing and fermentation times on the quality of black tea. Genetika 43:537-548. Arthur, C.L. and J. Pawliszyn. 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62:2145-2148. Astill, C., M.R. Birch, C. Dacombe, P.G. Humphrey, and P.T. Martin. 2001. Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J. Agr. Food Chem. 49:5340-5347. Auldridge, M.E., D.R. McCarty, and H.J. Klee. 2006. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 9:315-321. Baba, R. and K. Kumazawa. 2014. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis. J. Agr. Food Chem. 62:8308-8313. Balasubramanian, S. and S. Panigrahi. 2011. Solid-phase microextraction (spme) techniques for quality characterization of food products: a review. Food Bioprocess Technol. 4:1-26. Barra, A., N. Baldovini, A.M. Loiseau, L. Albino, C. Lesecq, and L. Lizzani Cuvelier. 2007. Chemical analysis of French beans (Phaseolus vulgaris L.) by headspace solid phase microextraction (HS-SPME) and simultaneous distillation/extraction (SDE). Food Chem. 101:1279-1284. Cai, X.M., X.L. Sun, W.X. Dong, G.C. Wang, and Z.M. Chen. 2014. Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 24:1-14. Chen, C.N., C.M. Liang, J.R. Lai, Y.J. Tsai, J.S. Tsay, and J.K. Lin. 2003. Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration. J. Agr. Food Chem. 51:7495. Chen, P.A., S.Y. Lin, C.F. Liu, Y.S. Su, H.Y. Cheng, J.H. Shiau, and I.Z. Chen. 2015. Correlation between nitrogen application to tea flushes and quality of green and black teas. Sci. Hort. 181:102-107. Chen, Y., Y. Jiang, J. Duan, J. Shi, S. Xue, and Y. Kakuda. 2010. Variation in catechin contents in relation to quality of ‘Huang Zhi Xiang’ Oolong tea (Camellia sinensis) at various growing altitudes and seasons. Food Chem. 119:648-652. Creelman, R.A. and J.E. Mullet. 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. U. S. A. 92:4114-4119. Deng, W., S. Ogita, and H. Ashihara. 2009. Ethylamine content and theanine biosynthesis in different organs of Camellia sinensis seedlings. Z. Naturforsch., C. 64:387-390. Du, L., J. Li, W. Li, Y. Li, T. Li, and D. Xiao. 2014. Characterization of volatile compounds of pu-erh tea using solid-phase microextraction and simultaneous distillation–extraction coupled with gas chromatography–mass spectrometry. Food Res. Intl. 57:61-70. Felfe, C., M. Schemainda, S. Baldermann, N. Watanabe, and P. Fleischmann. 2011. Metabolism of carotenoid degradation in leaves of Camellia sinensis—Functional and biochemical modifications. J. Food Compos. Anal. 24:821-825. Filek, G., M. Bergamini, and W. Lindner. 1995. Steam distillation-solvent extraction, a selective sample enrichment technique for the gas chromatographic-electron-capture detection of organochlorine compounds in milk powder and other milk products. J. Chromatogr. A 712:355-364. Fortini, M., M. Migliorini, C. Cherubini, L. Cecchi, and L. Calamai. 2017. Multiple internal standard normalization for improving HS-SPME-GC-MS quantitation in virgin olive oil volatile organic compounds (VOO-VOCs) profile. Talanta 165:641-652. Gao, X., S. Lv, Y. Wu, J. Li, W. Zhang, W. Meng, C. Wang, and Q. Meng. 2017. Volatile components of essential oils extracted from Pu-erh ripe tea by different extraction methods. Intl. J. Food Prop. 20:240-253. García, Y. M., J. C. M. Rufini, M. P. Campos, M. N. S. Guedes, R. Augusti, and J. O. F. Melo. 2019. Spme fiber evaluation for volatile organic compounds extraction from acerola. J. Braz. Chem. Soc. 30:247-255. Ghodake, H.M., T.K. Goswami, and A. Chakraverty. 2006. Mathematical modeling of withering characteristics of tea leaves. Drying Technol. 24:159-164. Guth, H. and W. Grosch. 1993. Identification of potent odourants in static headspace samples of green and black tea powders on the basis of aroma extract dilution analysis (AEDA). Flavour Fragr. J. 8:173-178. Hasimoto, M. 2001. The origin of the tea plant., p. J5-J7, Proc. Intl. Conf. O-Cha (tea) Cult. Sci. (Session II), Shizuoka, Japan. Herrmann, K.M. 1995. The shikimate pathway: early steps in the biosynthesis of aromatic compounds. The Plant cell 7:907-919. Hilal, Y. and U. Engelhardt. 2007. Characterisation of white tea – Comparison to green and black tea. J. Verbrauch. Lebensm. 2:414-421. Ho, C.T., X. Zheng, and S.m. Li. 2015. Tea aroma formation. Food Sci. Human Wellness 4:9-27. Hu, C.J., D. Li, Y.X. Ma, W. Zhang, C. Lin, X.Q. Zheng, Y.R. Liang, and J.L. Lu. 2018. Formation mechanism of the oolong tea characteristic aroma during bruising and withering treatment. Food Chem. 269:202-211. Hussain, S.Z. and K. Maqbool. 2014. GC-MS: Principle, Technique and its application in Food Science. Intl. J. Curr. Sci. 13:116-126. Ishino, N., E. Yanase, and S.-I. Nakatsuka. 2010. Epimerization of tea catechins under weakly acidic and alkaline conditions. Biosci., Biotechnol., Biochem. 74:875-877. Jiang, H., F. Yu, L. Qin, N. Zhang, Q. Cao, W. Schwab, D. Li, and C. Song. 2019. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J. Food Compos. Anal. 77:28-38. Jumtee, K., H. Komura, T. Bamba, and E. Fukusaki. 2011. Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis. J. Biosci. Bioeng. 112:252-255. Kaminaga, Y., J. Schnepp, G. Peel, C.M. Kish, G. Ben-Nissan, D. Weiss, I. Orlova, O. Lavie, D. Rhodes, K. Wood, D.M. Porterfield, A.J.L. Cooper, J.V. Schloss, E. Pichersky, A. Vainstein, and N. Dudareva. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281:23357. Kataoka, H., H.L. Lord, and J. Pawliszyn. 2000. Applications of solid-phase microextraction in food analysis. J. Chromatogr. 880:35-62. Khokhar, S. and S.G.M. Magnusdottir. 2002. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United kingdom. J. Agr. Food Chem. 50:565. Kinoshita, T., S. Hirata, Z. Yang, S. Baldermann, E. Kitayama, S. Matsumoto, M. Suzuki, P. Fleischmann, P. Winterhalter, and N. Watanabe. 2010. Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chem. 123:601-606. Kobayashi, A., K. Tachiyama, M. Kawakami, T. Yamanishi, I.M. Juan, and W.T.F. Chiu. 1985. Effects of solar-withering and turn over treatment during indoor-withering on the formation of pouchong tea aroma. Agr. Bio. Chem. 49:1655-1660. Kongpichitchoke, T., M.T. Chiu, T.C. Huang, and J.L. Hsu. 2016. Gallic acid content in taiwanese teas at different degrees of fermentation and its antioxidant activity by inhibiting pkcδ activation: in vitro and in silico studies. Molecules 21:1346. Kumar, P., S. Basheer, R. Ravi, and M. Thakur. 2011. Comparative assessment of tea quality by various analytical and sensory methods with emphasis on tea polyphenols. J. Food Sci. Technol. 48:440-446. Kumazawa, K. and H. Masuda. 1999. Identification of potent odorants in japanese green tea (sen-cha). J. Agr. Food Chem. 47:5169-5172. Kumazawa, K. and H. Masuda. 2002. Identification of potent odorants in different green tea varieties using flavor dilution technique. J. Agr. Food Chem. 50:5660-5663. Kuzuyama, T. and H. Seto. 2012. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proc. Jpn. Acad. Ser., B, Phys. Biol. Sci. 88:41-52. Larroque, V., V. Desauziers, and P. Mocho. 2006. Development of a solid phase microextraction (SPME) method for the sampling of VOC traces in indoor air. J. Environ. Monit. 8:106-111. Liang, Y., J. Lu, L. Zhang, S. Wu, and Y. Wu. 2003. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem. 80:283-290. Likens, S.T. and G.B. Nickerson. 1964. Detection of certain hop oil constituents in brewing products. Proc. Am. Soc. Brew. Chem. 22:5-13. Lin, J., Y. Chen, P. Zhang, M. Ren, H. Xu, and X. Wang. 2013a. A novel quality evaluation index and strategies to identify scenting quality of jasmine tea based on headspace volatiles analysis. Food Sci. Biotechnol. 22:331-340. Lin, J., P. Zhang, Z. Pan, H. Xu, Y. Luo, and X. Wang. 2013b. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analysed by HS-SPME/GC-MS. Food Chem. 141:259-265. Lin, J.K., C.L. Lin, Y.C. Liang, S.Y. Lin-Shiau, and I.M. Juan. 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J. Agr. Food Chem. 46:3635-3642. Lin, S.Y., Y.L. Chen, C.L. Lee, C.Y. Cheng, S.F. Roan, and I.Z. Chen. 2013c. Monitoring volatile compound profiles and chemical compositions during the process of manufacturing semi-fermented oolong tea. J. Hort. Sci. Biotechnol. 88:159-164. Lin, S.Y., L.C. Lo, I.Z. Chen, and P.A. Chen. 2016. Effect of shaking process on correlations between catechins and volatiles in oolong tea. J. Food Drug Anal. 24:500-507. Lin, Y.S., Y.J. Tsai, J.S. Tsay, and J.K. Lin. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agr. Food Chem. 51:1864. Liu, J., K. Hara, S. Kashimura, M. Kashiwagi, T. Hamanaka, A. Miyoshi, and M. Kageura. 2000. Headspace solid-phase microextraction and gas chromatographic–mass spectrometric screening for volatile hydrocarbons in blood. J. Chromatogr. B Biomed. Sci. Appl. 748:401-406. Liu, P.P., J.F. Yin, G.S. Chen, F. Wang, and Y.Q. Xu. 2018. Flavor characteristics and chemical compositions of oolong tea processed using different semi-fermentation times. J. Food Sci. Technol. 55:1185-1195. Ma, C., J. Li, W. Chen, W. Wang, D. Qi, S. Pang, and A. Miao. 2018. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography–mass spectrometry combined with chemometrics. Food Res. Intl. 108:413-422. Mizutani, M., H. Nakanishi, J.I. Ema, S.J. Ma, E. Noguchi, M. Inohara-Ochiai, M. Fukuchi-Mizutani, M. Nakao, and K. Sakata. 2002. Cloning of beta-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiol. 130:2164. Muthumani, T. and R.S.S. Kumar. 2007. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem. 101:98-102. Ng, K.W., Z.J. Cao, H.B. Chen, Z.Z. Zhao, L. Zhu, and T. Yi. 2018. Oolong tea: A critical review of processing methods, chemical composition, health effects, and risk. Crit. Rev. Food Sci. Nutr. 58:2957-2980. Caffin, N., B. D'Arcy., L. Yao, and G. Rintoul. 2004. Developing an index of quality for Australian tea. RIRDC, Barton, A.C.T. Obanda, M., P.O. Owuor, R. Mang’oka, and M.M. Kavoi. 2004. Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chem. 85:163-173. Ogawa, K., J.H. Moon, W.f. Guo, A. Yagi, N. Watanabe, and K. Sakata. 1995. A study on tea aroma formation mechanism: alcoholic aroma precursor amounts and glycosidase activity in parts of the tea plant. Z. Naturforsch., C. 50:493. Owuor, P.O., M.A. Obanda, C.O. Othieno, H. Horita, T. Tsushida, and T. Murai. 1987. Changes in the chemical composition and quality of black tea due to plucking standards. Agr. Bio. Chem. 51:3383-3384. Pongsuwan, W., T. Bamba, T. Yonetani, A. Kobayashi, and E. Fukusaki. 2008. Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. J. Agr. Food Chem. 56:744. Pripdeevech, P. and T. Machan. 2011. Fingerprint of volatile flavour constituents and antioxidant activities of teas from Thailand. Food Chem. 125:797-802. Rawat, R. and A. Gulati. 2007. Seasonal and clonal variations in some major glycosidic bound volatiles in Kangra tea (Camellia sinensis (L.) O. Kuntze). Eur. Food Res. Technol. 226:1241. Rawat, R., A. Gulati, G.D. Kiran Babu, R. Acharya, V.K. Kaul, and B. Singh. 2007. Characterization of volatile components of Kangra orthodox black tea by gas chromatography-mass spectrometry. Food Chem. 105:229-235. Riu-Aumatell, M., L. Vargas, S. Vichi, J.M. Guadayol, E. López-Tamames, and S. Buxaderas. 2011. Characterisation of volatile composition of white salsify (Tragopogon porrifolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation–extraction (SDE) coupled to GC–MS. Food Chem. 129:557-564. Rowan, D.D. 2011. Volatile metabolites. Metabolites 1:41-63. Saijo, R. 1980. Effect of shade treatment on biosynthesis of catechins in tea plants. Plant Cell Physiol. 21:989-998. Samanta, T., V. Cheeni, S. Das, A. Roy, B. Ghosh, and A. Mitra. 2015. Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea. J. Food Sci. Technol. 52:2387-2393. Schuh, C. and P. Schieberle. 2006. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. J. Agr. Food Chem. 54:916. Schwab, W., R. Davidovich-Rikanati, and E. Lewinsohn. 2008. Biosynthesis of plant-derived flavor compounds. Plant J. 54:712-732. Sekiya, J., T. Kajiwara, and A. Hatanaka. 1984. Seasonal changes in activities of enzymes responsible for the formation of C6-aldehydes and C6-alcohols in tea leaves, and the effects of environmental temperatures on the enzyme activities. Plant Cell Physiol. 25:269-280. Senthil Kumar, R.S., N.N. Muraleedharan, S. Murugesan, G. Kottur, M.P. Anand, and A. Nishadh. 2011. Biochemical quality characteristics of CTC black teas of south India and their relation to organoleptic evaluation. Food Chem. 129:117-124. Sheibani, E., S.E. Duncan, D.D. Kuhn, A.M. Dietrich, J.J. Newkirk, and Sean F. O'Keefe. 2015. Changes in flavor volatile composition of oolong tea after panning during tea processing. Food Sci. Nutr. 4:456-468. Sheibani, E., S.E. Duncan, D.D. Kuhn, A.M. Dietrich, and S.F. O'Keefe. 2016. SDE and SPME analysis of flavor compounds in jin xuan oolong tea. J. Food Sci. 81:C348. Shimoda, M., H. Shigematsu, H. Shiratsuchi, and Y. Osajima. 1995. Comparison of volatile compounds among different grades of green tea and their relations to odor attributes. J. Agr. Food Chem. 43:1621-1625. Singh, K., S. Kumar, A. Rani, A. Gulati, and P.S. Ahuja. 2009. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct. Integr. Genomics 9:125-134. Su, Y.L., L.K. Leung, Y. Huang, and Z.Y. Chen. 2003. Stability of tea theaflavins and catechins. Food Chem. 83:189-195. Takeo, T. and P.K. Mahanta. 1983. Comparison of black tea aromas of orthodox and CTC tea and of black teas made from different varieties. J. Sci. Food Agr. 34:307-310. Tanaka, T. and I. Kouno. 2003. Oxidation of tea catechins: chemical structures and reaction mechanism. Food Sci. and Technol. Res. 9:128-133. Thompson-Witrick, K.A., R.L. Rouseff, K.R. Cadawallader, S.E. Duncan, W.N. Eigel, J.M. Tanko, and S.F. O'Keefe. 2015. Comparison of two extraction techniques, solid-phase microextraction versus continuous liquid-liquid extraction/solvent-assisted flavor evaporation, for the analysis of flavor compounds in gueuze lambic beer. J. Food Sci. 80:C571. Thorngate, J.H. and A.C. Noble. 1995. Sensory evaluation of bitterness and astringency of 3R(−)-epicatechin and 3S(+)-catechin. J. Sci. Food Agr. 67:531-535. Tieman, D., M. Taylor, N. Schauer, A.R. Fernie, A.D. Hanson, and H.J. Klee. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. U. S. A. 103:8287-8292. Tieman, D.M., H.M. Loucas, J.Y. Kim, D.G. Clark, and H.J. Klee. 2007. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochem. 68:2660-2669. Tokitomo, Y., M. Ikegami, T. Yamanishi, I.M. Juan, and W.T.F. Chiu. 1984. Effects of withering and mass-rolling processes on the formation of aromacomponentsin pouchong type semi-fermented tea. Agr. Bio. Chem. 48:87-91. Tuduri, L., V. Desauziers, and J.L. Fanlo. 2001. Potential of Solid-phase microextraction fibers for the analysis of volatile organic compounds in air. J. Chromatogr. Sci. 39:521-529. Tzin, V. and G. Galili. 2010. The biosynthetic pathways for shikimate and aromatic amino acids in arabidopsis thaliana. Arabidopsis Book 8:e0132-e0132. Vas, G. and K. Vékey. 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39:233-254. Wang, D., K. Ando, K. Morita, K. Kubota, and A. Kobayashi. 1994. Optical isomers of linalool and linalool oxides in tea aroma. Biosci., Biotechnol., Biochem. 58:2050-2053. Wang, D., K. Kubota, A. Kobayashi, and I.M. Juan. 2001. Analysis of glycosidically bound aroma precursors in tea leaves. 3. Change in the glycoside content of tea leaves during the oolong tea manufacturing process. J. Agr. Food Chem. 49:5391. Wang, H., P. Li, S.H. Sun, Q.D. Zhang, Y. Su, Y.L. Zong, and J.P. Xie. 2014. Comparison of liquid-liquid extraction, simultaneous distillation extraction, ultrasound-assisted solvent extraction, and headspace solid-phase microextraction for the determination of volatile compounds in jujube extract by gas chromatography/mass spectrometry. Anal. Lett. 47:654-674. Wang, K., F. Liu, Z. Liu, J. Huang, Z. Xu, Y. Li, J. Chen, Y. Gong, and X. Yang. 2010. Analysis of chemical components in oolong tea in relation to perceived quality. Intl. J. Food Sci. Technol. 45:913-920. Wang, K. and J. Ruan. 2009. Analysis of chemical components in green tea in relation with perceived quality, a case study with Longjing teas. Intl. J. Food Sci. Technol. 44:2476-2484. Wang, L.F., J.Y. Lee, J.O. Chung, J.H. Baik, S. So, and S.K. Park. 2008. Discrimination of teas with different degrees of fermentation by SPME–GC analysis of the characteristic volatile flavour compounds. Food Chem. 109:196-206. Wang, Y., Q. Li, Q. Wang, Y.Li, J. Ling, L. Liu, X. Chen, and K. Bi. 2012. Simultaneous determination of seven bioactive components in Oolong tea Camellia sinensis: quality control by chemical composition and HPLC fingerprints. J. Agr. Food Chem. 60:256-260. Wei, K., L. Wang, J. Zhou, W. He, J. Zeng, Y. Jiang, and H. Cheng. 2011. Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem. 125:44-48. Winterhalter, P. and G.K. Skouroumounis, 1997. Glycoconjugated aroma compounds: occurrence, role and biotechnological transformation, p. 73-105. Biotechnol. of Aroma Compounds. Springer Berlin Heidelberg. Berlin, Heidelberg. Qiang, X., Z., L. Qing Sheng, X. Li Ping, and L. Y. Rong. 2016. Recent advances in volatiles of teas. Molecules 21:338. Xu, Y., C. Wang, C.W. Li, S.H. Liu, C.X. Zhang, L.W. Li, and D.H. Jiang. 2016. Characterization of aroma-active compounds of pu-erh tea by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation-extraction (SDE) coupled with GC-olfactometry and GC-MS. Food Anal. Methods 9:1188-1198. Xu, Y.Q., P.P. Liu, J. Shi, Y. Gao, Q.S. Wang, and J.F. Yin. 2018. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food Chem. 249:176-183. Yang, X. and T. Peppard. 1994. Solid-phase microextraction for flavor analysis. J. Agr. Food Chem. 42:1925-1930. Yang, Z., S. Baldermann, and N. Watanabe. 2013. Recent studies of the volatile compounds in tea. Food Res. Intl. 53:585-599. Yang, Z., T. Kinoshita, A. Tanida, H. Sayama, A. Morita, and N. Watanabe. 2009. Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceous odour. Food Chem. 114:289-294. Zeng, L., Y. Zhou, X. Fu, X. Mei, S. Cheng, J. Gui, F. Dong, J. Tang, S. Ma, and Z. Yang. 2017. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chem. 237:488-498. Zeng, L., Y. Zhou, J. Gui, X. Fu, X. Mei, Y. Zhen, T. Ye, B. Du, F. Dong, N. Watanabe, and Z. Yang. 2016. Formation of volatile tea constituent indole during the oolong tea manufacturing process. J. Agr. Food Chem. 64:5011-5019. Zhu, J., F. Chen, L. Wang, Y. Niu, D. Yu, C. Shu, H. Chen, H. Wang, and Z. Xiao. 2015. Comparison of aroma-active volatiles in oolong tea infusions using GC-olfactometry, GC-FPD, and GC-MS. J. Agr. Food Chem. 63:7499-7510. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67450 | - |
| dc.description.abstract | 包種茶為輕度部分發酵茶,特色為優雅的花香,製作時需仰賴製茶師以嗅聞監控茶菁氣味變化,來決定每個步驟的動作時機。但是,決定停止氧化、進入炒菁步驟前的氣味特徵,各製茶師敘述不同。本研究以菁味程度,標定炒菁前的氣味特徵,分析炒菁前、後及茶葉的揮發性化合物組成與茶葉品質內容物,以瞭解炒菁前氣味與茶葉品質之關聯,作為後續製茶研究的基礎。 試驗以包種茶製程攪拌次數及炒菁前氣味的菁味程度作為主要處理因子。試驗一於2018年冬季、2019年春季製作包種茶,製程攪拌次數分別為3、4、5次,炒菁前菁味程度分為高、中、低三個程度。試驗二於2019年的冬季製作包種茶,製作時,攪拌次數為3次與4次,菁味程度則分為高、低兩種程度,並同時以專業師傅及電子鼻判定菁味程度。分別於炒菁前、後和粗製茶隨機取樣3重複,並以氣相層析串聯質譜儀分析揮發性化合物,以高效能液相層析儀分析兒茶素異構物、咖啡因、沒食子酸,粗製茶則增加分析總多元酚含量、總游離胺基酸含量、總還原醣含量。 炒菁前茶菁的揮發性化合物組成,以具有青草氣味的醛類化合物為主,以(E)-2 -己烯醛((E)-2-Hexenal)為代表,炒菁時菁味程度低的茶菁,含有更多具有花果氣味的萜類化合物,如香葉醇(Geraniol)、芳樟醇(Linalool)、吲哚(Indole),及帶甜香的酯類,如(Z)-3-己酸己烯酯((Z)-3-Hexenyl hexanoate);而攪拌次數多的茶菁揮發性化合物種類較多,且有較高比例的花果香氣化合物。炒菁後茶菁的揮發性化合物大量逸散,幾乎無具有綠葉氣味的化合物,以吲哚的相對豐度最高,組成比例在攪拌次數較多、菁味程度高的處理組合中含量比例較高,菁味程度中等的處理組合則有較高比例的萜醇類。吲哚及苯乙腈(Benzyl nitrile)在炒菁前後可較為穩定辨識出,且在炒菁前後具中或高相關性的化合物, 具作為炒菁前氣味指標化合物的潛力。 經沖泡後的茶葉葉底,揮發性化合物種類豐富,以主成分分析可依揮發性化合物組成類型,區別不同攪拌次數處理,並能指示不同菁味程度。不同處理間,兒茶素異構物及總兒茶素含量幾無顯著差異。在高菁味程度的茶葉中,有更多多元酚類及游離胺基酸類,而攪拌次數增加時,還原醣類含量增加,游離胺基酸類含量減少,結果顯示菁味程度及攪拌次數會影響茶湯內容物比例及滋味,在菁味程度低時炒菁能減少澀味,增加甜味,進而獲得更加優良的包種茶品質。本研究解析包種茶炒菁前氣味的菁味表現對茶葉品質的影響,說明適宜炒菁時機的重要性。 | zh_TW |
| dc.description.abstract | Paochung oolong tea is a light fermentation tea which features for the elegant floral aroma. The manufacturing process depends on tea masters monitoring the odour changes of tea leaves by sniffing to determine the optimum processing time of each step. However, the odour profile of tea leaves considered suitable to stop the oxidation and pan-firing vary by tea masters. The study targets the odour profile before pan-firing by the intensity of green odour. The volatile organic compounds (VOCs) of fresh tea leaves before and after pan-firing are analysed, and assessed the VOCs and constitute of tea infusion, to understand the effects of odour profile of fresh tea leaves before pan-firing on tea quality. Aiming to provide an odour index for the future works of the tea industry. The main experimental factors are times of shaking and green odour intensity before and-firing. In 1st experiment, Paochung oolong tea was made in the 2018 winter and 2019 spring with 3,4,5 times of shaking and high, medium, low green odour intensity respectively. In 2nd experiment, Paochung oolong tea was made in the 2019 winter, with 3,4 times of shaking and high, low green odour intensity respectively. Besides, green odour intensity is assessed by tea masters and gas sensors. The triplicates are conducted in each treatment. Gas chromatography-mass spectrometry and high performance liquid chromatography were used to analysed VOCs, catechin epi-isomers, caffeine and gallic acid. The total polyphenol content, total free amino content and total reduced sugar content of tea infusion were also analysed. The results showed that the VOCs of fresh tea leaves before pan-firing are mainly constituted of aldehydes such as (E)-2-hexenal, which gives green grass aroma. The treatment of low green odour intensity contains more terpenoids which give floral or fruity aroma, such as geraniol, linalool and indole, and esters which give sweet aroma, such as (Z)-3-hexenyl hexanoate. The varieties of VOCs and floral and fruity aroma compounds increased with times of shaking in the fresh tea leaves. Most of VOCs dispatches after pan-firing, no green odour VOCs are detected. Indole is the main constitutes and shows a higher ratio in high green odour intensity treatment; the terpene alcohols showed a higher ratio in medium green odour intensity treatment. Indole and benzyl nitrile are detected steadily and show medium or high correlation in fresh tea leaves before and after pan-firing. It could be a potential odour index for fresh tea leaves before pan-firing. The VOCs varieties are more abundant in infused tea leaf compared to the fresh tea leaves after pan-firing and could be clustering by times of shaking and green odour intensity by principal component analysis. Nearly no significant difference is suggested in catechin epi-isomer and total catechin content between treatments. There are more total polyphenol and free amino acid in high green odour intensity treatment, more reduced sugar and less free amino acid in the treatment of fewer times of shaking. The results showed that the green odour intensity and times of shaking have effects on tea infusion constitute and taste. A better tea quality could be acquired by pan-firing the fresh tea leaves of low green odour intensity, which shows fewer astringent compounds and more sweet compounds. The research study the effects of the green odour of fresh tea leaves before pan-firing on the tea quality indicate the importance of pan-firing timing. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:32:44Z (GMT). No. of bitstreams: 1 U0001-1508202019403700.pdf: 3226392 bytes, checksum: bb71f57d53f41632d318ce2f397e0128 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 摘要 ii Abstract iv 目錄 vi 表目錄 x 圖目錄 xii 第一章 前言 1 第二章 文獻回顧 2 一、 茶葉種類 2 二、 包種茶茶葉製程 3 (一) 茶菁採摘 3 (二) 萎凋 4 (三) 攪拌與靜置 4 (四) 殺菁(炒菁) 5 (五) 揉捻 5 (六) 乾燥 5 三、 茶葉重要品質內容物 6 (一) 兒茶素 6 (二) 揮發性有機化合物 8 1. 四大生合成途徑及重要化合物 8 2. 茶的醣苷類(Glycosidically-bound) 10 3. 揮發性化合物與兒茶素在製作過程中的關聯性 11 四、 揮發性化合物的萃取與分析 11 (一) 同步蒸餾溶劑萃取法 (simultaneous steam distillation-solvent extraction, SDE) 12 (二) 固相微萃取(Solid phase microextraction, SPME) 12 (三) 氣相層析串聯質譜儀(Gas chromatography–mass spectrometry, GC-MS) 13 五、 茶葉品質指標 14 第三章 材料與方法 16 一、 植物材料 16 二、 試驗處理 16 三、 藥品、試劑及其它耗材 17 (一) 總還原醣含量測定 17 (二) 總多元酚含量測定 17 (三) 總游離胺基酸含量測定 17 (四) 兒茶素異構物、沒食子酸及咖啡因分析 18 (五) 揮發性化合物分析 19 四、 實驗儀器 19 五、 樣品分析 19 (一) 茶湯內容物品質分析樣品萃取液製備 19 (二) 總多元酚分析 19 (三) 總還原醣分析 20 (四) 游離胺基酸分析:茚三酮法 20 (五) 兒茶素異構物、咖啡因及沒食子酸含量分析 21 (六) 揮發性化合物分析 21 六、 統計分析方法 23 第四章 結果 24 試驗一、以嗅聞界定炒菁時機之揮發性物質特徵與其對品質之影響 24 (一) 揮發性有機化合物 24 (二) 兒茶素異構物 31 (三) 其它茶湯品質內容物 31 試驗二、人與電子鼻判定炒菁時機之揮發性物質特徵與其對品質之影響 33 (一) 揮發性有機化合物 33 (二) 兒茶素異構物 36 (三) 其它茶湯品質內容物 37 第五章 討論 38 一、 揮發性有機化合物 38 (一) 炒菁前的茶菁揮發性化合物變化 38 (二) 炒菁後的茶菁揮發性化合物變化 40 (三) 葉底揮發性化合物的變化 41 (四) 氣味指標 42 二、 兒茶素 43 三、 茶葉品質內容物 45 第六章 結論 46 表 47 圖 87 參考文獻 96 附錄 107 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氣相層析串聯質譜儀 | zh_TW |
| dc.subject | 固相微萃取 | zh_TW |
| dc.subject | 電子鼻 | zh_TW |
| dc.subject | 兒茶素 | zh_TW |
| dc.subject | solid-phase microextraction (SPME) | en |
| dc.subject | gas chromatography–mass spectrometry (GC-MS) | en |
| dc.subject | electronic nose | en |
| dc.subject | catechins | en |
| dc.title | 揮發性化合物組成與包種茶炒菁時機之關係 | zh_TW |
| dc.title | Relationship of Volatile Compounds Composition and Pan-firing Timing of Paochung Tea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳柏安(Po-An Chen),陳右人(Lou-Zen Chen),陳國任(Kuo-Renn Chen) | |
| dc.subject.keyword | 固相微萃取,氣相層析串聯質譜儀,電子鼻,兒茶素, | zh_TW |
| dc.subject.keyword | solid-phase microextraction (SPME),gas chromatography–mass spectrometry (GC-MS),electronic nose,catechins, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU202003535 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1508202019403700.pdf 未授權公開取用 | 3.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
