Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67446
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 黃俊郎(Jiun-Lang Huang) | |
dc.contributor.author | Yang-Kai Huang | en |
dc.contributor.author | 黃陽凱 | zh_TW |
dc.date.accessioned | 2021-06-17T01:32:34Z | - |
dc.date.available | 2017-08-08 | |
dc.date.copyright | 2017-08-08 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-02 | |
dc.identifier.citation | [1] Quad Pin Timing Formatter ADATE207, Analog Device Inc, 2007.
[2] Y.-Y. Chen, “An FPGA-based Sub-nanosecond Low-cost Timing Generator and Formatter,” M.S. thesis, National Taiwan University, Taipei, Taiwan, 2013. [3] P.-C. Shu, “A High Resolution and High Accuracy FPGA Formatter Prototype,” M.S. thesis, National Taiwan University, Taipei, Taiwan, 2014. [4] C.-L. Hsiao, “A High-Resolution FPGA Formatter with Symbol-Stretching and Inversion Capability,” M.S. thesis, National Taiwan University, Taipei, Taiwan, 2016. [5] K.-T. Li, “Design and Implementation of 25-ps Resolution, EG-Pool Based Formatter on FPGA,” M.S. thesis, National Taiwan University, Taipei, Taiwan, 2016. [6] A. R. Syed, “RIC/DICMOS - Multi-channel CMOS Formatter,” in International Test Conference, 2003, pp. 175 – 184. [7] A. R. Syed, “Automatic delay calibration method for multichannel CMOS formatter,” in International Test Conference, 2004, pp. 577 – 586. [8] Jaeseok Park, et al. ”Integration of Dual Channel Timing Formatter System for High Speed Memory Test Equipment,” in International SoC Design Conference, 2012, pp. 185 – 187. [9] Luca Mostardini, et al. “FPGA-based Low-cost Automatic Test Equipment for Digital Integrated Circuits,” in International Workshop on Intelligent Data Acquisition and Advanced Computing System: Technology and Applications, 2009, pp. 32 – 37. [10] The Fundamentals of Digital Semiconductor Testing, Soft Test, 2013. [11] C.-A. Lee, “Implementation of High-Resolution and Area-Efficient FPGA Programmable Delay Lines,” M.S. thesis, National Taiwan University, Taipei, Taiwan, 2015. [12] C. Hervé, “High resolution time-to-digital converter (TDC) implemented in field programmable gate array (FPGA) with compensated process voltage and temperature (PVT) variations,” in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, pp. 16 – 25. [13] J. Torre, “Time-to-Digital Converter Based on FPGA With Multiple Channel Capability,” in IEEE Transactions on Nuclear Science, 2014, pp. 107 – 114. [14] Constrains Guide, Xilinx, 2012. [15] Spartan-6 FPGA Configurable Logic Block, Xilinx, 2010. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67446 | - |
dc.description.abstract | 自動測試機台(ATE)被使用來測試積體電路(Integrated Circuit, IC)的性能與功能,避免缺陷的IC流入市場。格式器(Formatter)在自動測試機台裡是相當重要的核心模組,其負責將使用者定義的符號資料(Symbol Data)─測試向量(Test Vector)、符號寬度(Symbol width)、訊號格式(Signal Format)、邊緣時序(Edge Timing)等資訊組合,以產生待測電路所需的測試波形。
本論文提出的格式器支援多通道,可供應測試波形給予待測電路的多個輸入腳位進行測試。利用邊緣產生器控制器(Edge Generator Pool Controller)指派邊緣產生器池(EG-pool),產生測試波形所需的轉態邊緣,並透過邊緣產生器排程(EG scheduling)更精確控制邊緣產生器轉態(Transition)的時間點。接著我們針對每個通道進行校準(Calibration)與對齊(Alignment),使每個通道的輸出波形彼此有最小的歪斜(Skew)。此外,我們使用延遲值監控器(Delay Value Monitor)監測可程式化延遲線(Programmable Delay Line)的變化,並加以進行溫度補償(Temperature Compensation),以維持邊緣產生器池產生轉態邊緣的性能。 最後,本論文實作的FPGA格式器,其支援5個通道。在校正及對齊後,通道間的最大誤差為2 ps。在進行邊緣產生器排程後邊緣擺置(Edge Placement)具備200 ps的解析度與小於50 ps的高精確度。在溫度補償部分,能有效改善溫度造成的延遲線飄移(Drift)之現象,減少溫度對邊緣擺置精確度下降的影響。 | zh_TW |
dc.description.abstract | The Automatic Test Equipment (ATE) is used to test the performance and capabilities of the integrated circuit to prevent defective IC from the market. The formatter is a very important module in ATE, it is responsible for the user-defined symbol data, including test vector, signal width, signal format and edge timings to generate the desired test signal.
In this thesis, the formatter which support multi-channel can supply the test waveforms and to give DUT of multiple input pins for the test. We used the Edge Generator Pool Controller assigning EG-pool to generate the transition edge of test waveform. At the same time, we can accurately control the EG transition by the proposed EG scheduling method. Then the output waveform of all channels get the smallest skew after we perform calibration and alignment. Besides, we use the Delay Value Monitor to monitor delay values drift in the Programmable Delay Line of EG and to perform temperature compensation, so we can maintain the edge generator pool performance for generating transition. Finally, the FPGA formatter, which support five channels, was implemented in this thesis. The maximum skew between channels is 2 ps after the calibration and alignment. Edge Placement is possible to achieve 200 ps resolution and accuracy less than 50 ps with EG scheduling. Simultaneously, the experiment results show that using the temperature compensation can effectively improve the delay values drifted by temperature variation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:32:34Z (GMT). No. of bitstreams: 1 ntu-106-R04943082-1.pdf: 5746122 bytes, checksum: badfd28f07f55c9199d37d6c38239f6e (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 x 第1章 緒論 1 1.1 研究動機與目的 1 1.2 相關研究 2 1.3 研究貢獻 3 1.4 論文架構 3 第2章 格式器介紹與先前相關研究 4 2.1 自動測試機台(Automatic Test Equipment, ATE) 4 2.2 格式器(Formatter) 5 2.3 先前研究 7 2.3.1 格式器原型架構(Formatter Prototype Architecture) 7 2.3.2 邊緣產生器池概念(Edge Generator Pool Concept) 10 2.3.3 可程式化延遲線(Programmable Delay Line)與校準(Calibration) 12 2.3.4 現場可程式化邏輯陣列(Field-Programmable Gate Array) 14 第3章 以FPGA實現之多通道格式器架構 16 3.1 符號資料(Symbol Data)定義與編碼方式 17 3.2 多通道格式器架構 19 3.2.1 格式器控制器(Formatter Controller) 19 3.2.2 邊緣產生器池控制器(EG-Pool Controller) 24 3.2.3 邊緣產生器池(EG-Pool)與邊緣產生器 29 3.2.4 邊緣組合器(Edge Combiner) 31 3.2.5 延遲值監控器(Delay Value Monitor) 32 3.3 多通道之對齊(Alignment)機制 34 3.4 邊緣產生器延遲值之溫度補償(Temperature Compensation) 36 第4章 多通道格式器之實作 39 4.1 可程式化延遲線之實作與量測結果 39 4.2 FPGA格式器佈局(Layout) 48 4.3 電腦端之LabVIEW操作機制 49 第5章 實驗結果 51 5.1 多通道格式器之效能分析 51 5.2 溫度補償實驗之結果 53 5.3 多通道格式器之功能驗證 57 5.3.1 邊緣擺置結果 57 5.3.2 測試波形示範 59 5.4 資源使用量與功率消耗 62 第6章 結論與未來研究方向 64 6.1 結論 64 6.2 未來研究方向 64 參考文獻 65 | |
dc.language.iso | zh-TW | |
dc.title | 於現場可程式化邏輯閘陣列實現一個具有溫度補償的200皮秒解析度格式器 | zh_TW |
dc.title | An FPGA-based Temperature Compensated 200-ps Resolution Multi-channel Formatter | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃炫倫(Xuan-Lun Huang),洪浩喬(Hao-Chiao Hong),鄭國興(Kuo-Hsing Cheng) | |
dc.subject.keyword | 自動測試機台,多通道格式器,可程式化延遲線,溫度補償,現場可程式化邏輯閘陣列,時序電路, | zh_TW |
dc.subject.keyword | ATE,Multi-channel Formatter,Programmable Delay Line,Temperature Compensation,FPGA,Timing Circuit, | en |
dc.relation.page | 66 | |
dc.identifier.doi | 10.6342/NTU201702480 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-03 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
Appears in Collections: | 電子工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 5.61 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.