請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67432
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄧述諄 | |
dc.contributor.author | Meng-Hsun Hsieh | en |
dc.contributor.author | 謝孟勳 | zh_TW |
dc.date.accessioned | 2021-06-17T01:31:59Z | - |
dc.date.available | 2017-09-12 | |
dc.date.copyright | 2017-09-12 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-03 | |
dc.identifier.citation | Agarwal, S., Loh, Y.H., McLoughlin, E.M., Huang, J., Park, I.H., Miller, J.D., Huo, H., Okuka, M., Dos Reis, R.M., Loewer, S., et al. (2010). Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464, 292-296.
Aksoy, I., Giudice, V., Delahaye, E., Wianny, F., Aubry, M., Mure, M., Chen, J., Jauch, R., Bogu, G.K., Nolden, T., et al. (2014). Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nat Commun 5, 3719. Althaus, F.R. (1992). Poly ADP-ribosylation: a histone shuttle mechanism in DNA excision repair. J Cell Sci 102 ( Pt 4), 663-670. Anbalagan, S., Bonetti, D., Lucchini, G., and Longhese, M.P. (2011). Rif1 supports the function of the CST complex in yeast telomere capping. In PLoS genetics, pp. e1002024. Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., and Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699-702. Armstrong, L., Saretzki, G., Peters, H., Wappler, I., Evans, J., Hole, N., von Zglinicki, T., and Lako, M. (2005). Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem cells (Dayton, Ohio) 23, 516-529. Artandi, S.E., and DePinho, R.A. (2000). A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 10, 39-46. Batista, L.F., Pech, M.F., Zhong, F.L., Nguyen, H.N., Xie, K.T., Zaug, A.J., Crary, S.M., Choi, J., Sebastiano, V., Cherry, A., et al. (2011). Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474, 399-402. Bechter, O.E., Zou, Y., Walker, W., Wright, W.E., and Shay, J.W. (2004). Telomeric recombination in mismatch repair deficient human colon cancer cells after telomerase inhibition. Cancer Res 64, 3444-3451. Bhattacharyya, S., Keirsey, J., Russell, B., Kavecansky, J., Lillard-Wetherell, K., Tahmaseb, K., Turchi, J.J., and Groden, J. (2009). Telomerase-associated protein 1, HSP90, and topoisomerase IIalpha associate directly with the BLM helicase in immortalized cells using ALT and modulate its helicase activity using telomeric DNA substrates. J Biol Chem 284, 14966-14977. Bryan, T.M., Englezou, A., Dalla-Pozza, L., Dunham, M.A., and Reddel, R.R. (1997). Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3, 1271-1274. Buseman, C.M., Wright, W.E., and Shay, J.W. Is telomerase a viable target in cancer? Mutat Res 730, 90-97. Cesare, A.J., and Reddel, R.R. (2010). Alternative lengthening of telomeres: models, mechanisms and implications. Nature reviews Genetics 11, 319-330. Chen, H.F., Kuo, H.C., Chien, C.L., Shun, C.T., Yao, Y.L., Ip, P.L., Chuang, C.Y., Wang, C.C., Yang, Y.S., and Ho, H.N. (2007). Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod 22, 567-577. Chen, Q., Ijpma, A., and Greider, C.W. (2001). Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol 21, 1819-1827. Chiou, S.H., Jiang, B.H., Yu, Y.L., Chou, S.J., Tsai, P.H., Chang, W.C., Chen, L.K., Chen, L.H., Chien, Y., and Chiou, G.Y. (2013). Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc. J Exp Med 210, 85-98. Corbett, K.D., and Berger, J.M. (2004). Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annual review of biophysics and biomolecular structure 33, 95-118. Creighton, A.M., Hellmann, K., and Whitecross, S. (1969). Antitumour activity in a series of bisdiketopiperazines. Nature 222, 384-385. D'Amours, D., Desnoyers, S., D'Silva, I., and Poirier, G.G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342 ( Pt 2), 249-268. de Lange, T. (2002). Protection of mammalian telomeres. Oncogene 21, 532-540. Dejardin, J., and Kingston, R.E. (2009). Purification of proteins associated with specific genomic Loci. Cell 136, 175-186. Doege, C.A., Inoue, K., Yamashita, T., Rhee, D.B., Travis, S., Fujita, R., Guarnieri, P., Bhagat, G., Vanti, W.B., Shih, A., et al. (2012). Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652-655. Dunham, M.A., Neumann, A.A., Fasching, C.L., and Reddel, R.R. (2000). Telomere maintenance by recombination in human cells. Nature genetics 26, 447-450. Evans, P.M., and Liu, C. (2008). Roles of Krupel-like factor 4 in normal homeostasis, cancer and stem cells. Acta biochimica et biophysica Sinica 40, 554-564. Gao, F., Kwon, S.W., Zhao, Y., and Jin, Y. (2009). PARP1 poly(ADP-ribosyl)ates Sox2 to control Sox2 protein levels and FGF4 expression during embryonic stem cell differentiation. J Biol Chem 284, 22263-22273. Geiman, D.E., Ton-That, H., Johnson, J.M., and Yang, V.W. (2000). Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic acids research 28, 1106-1113. Gotta, M., Laroche, T., Formenton, A., Maillet, L., Scherthan, H., and Gasser, S.M. (1996). The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. The Journal of cell biology 134, 1349-1363. Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413. Grobelny, J.V., Godwin, A.K., and Broccoli, D. (2000). ALT-associated PML bodies are present in viable cells and are enriched in cells in the G(2)/M phase of the cell cycle. J Cell Sci 113 Pt 24, 4577-4585. Hardy, C.F., Sussel, L., and Shore, D. (1992). A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6, 801-814. Hellmann, K., Newton, K.A., Whitmore, D.N., Hanham, I.W., and Bond, J.V. (1969). Preliminary clinical assessment of I.C.R.F. 159 in acute leukaemia and lymphosarcoma. British medical journal 1, 822-824. Henson, J.D., Neumann, A.A., Yeager, T.R., and Reddel, R.R. (2002). Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598-610. Hoffmeyer, K., Raggioli, A., Rudloff, S., Anton, R., Hierholzer, A., Del Valle, I., Hein, K., Vogt, R., and Kemler, R. (2012). Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336, 1549-1554. Holm, C., Stearns, T., and Botstein, D. (1989). DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol 9, 159-168. Hong, J.B., Chou, F.J., Ku, A.T., Fan, H.H., Lee, T.L., Huang, Y.H., Yang, T.L., Su, I.C., Yu, I.S., Lin, S.W., et al. (2014). A nucleolus-predominant piggyBac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells. PLoS One 9, e89396. Hu, J., Hwang, S.S., Liesa, M., Gan, B., Sahin, E., Jaskelioff, M., Ding, Z., Ying, H., Boutin, A.T., Zhang, H., et al. (2012). Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell 148, 651-663. Huang, P., Pryde, F.E., Lester, D., Maddison, R.L., Borts, R.H., Hickson, I.D., and Louis, E.J. (2001). SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol 11, 125-129. Huang, Y., Liang, P., Liu, D., Huang, J., and Songyang, Z. (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5, 194-202. Idogawa, M., Masutani, M., Shitashige, M., Honda, K., Tokino, T., Shinomura, Y., Imai, K., Hirohashi, S., and Yamada, T. (2007). Ku70 and poly(ADP-ribose) polymerase-1 competitively regulate beta-catenin and T-cell factor-4-mediated gene transactivation: possible linkage of DNA damage recognition and Wnt signaling. Cancer Res 67, 911-918. Ira, G., Malkova, A., Liberi, G., Foiani, M., and Haber, J.E. (2003). Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401-411. Ji, Y., and Tulin, A.V. (2010). The roles of PARP1 in gene control and cell differentiation. Curr Opin Genet Dev 20, 512-518. Jiang, J., Chan, Y.S., Loh, Y.H., Cai, J., Tong, G.Q., Lim, C.A., Robson, P., Zhong, S., and Ng, H.H. (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature cell biology 10, 353-360. Johnson, F.B., Marciniak, R.A., McVey, M., Stewart, S.A., Hahn, W.C., and Guarente, L. (2001). The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 20, 905-913. Kim, I.K., Stegeman, R.A., Brosey, C.A., and Ellenberger, T. (2015). A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase. J Biol Chem 290, 3775-3783. Kim, M.Y., Zhang, T., and Kraus, W.L. (2005). Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev 19, 1951-1967. Koshland, D., and Hartwell, L.H. (1987). The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae. Science 238, 1713-1716. Kraus, W.L., and Lis, J.T. (2003). PARP goes transcription. Cell 113, 677-683. Lai, J.S., and Herr, W. (1992). Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proceedings of the National Academy of Sciences of the United States of America 89, 6958-6962. Li, T.K., and Liu, L.F. (2001). Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41, 53-77. Lindahl, T., Satoh, M.S., Poirier, G.G., and Klungland, A. (1995). Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends in biochemical sciences 20, 405-411. Lovejoy, C.A., Li, W., Reisenweber, S., Thongthip, S., Bruno, J., de Lange, T., De, S., Petrini, J.H., Sung, P.A., Jasin, M., et al. (2012). Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS genetics 8, e1002772. Lundblad, V., and Szostak, J.W. (1989). A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633-643. Luo, K., Vega-Palas, M.A., and Grunstein, M. (2002). Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16, 1528-1539. Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell stem cell 1, 55-70. Marcand, S., Gilson, E., and Shore, D. (1997). A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986-990. Marcand, S., Pardo, B., Gratias, A., Cahun, S., and Callebaut, I. (2008). Multiple pathways inhibit NHEJ at telomeres. Genes Dev 22, 1153-1158. Marion, R.M., Strati, K., Li, H., Tejera, A., Schoeftner, S., Ortega, S., Serrano, M., and Blasco, M.A. (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell stem cell 4, 141-154. Masson, M., Niedergang, C., Schreiber, V., Muller, S., Menissier-de Murcia, J., and de Murcia, G. (1998). XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18, 3563-3571. McConnell, B.B., Ghaleb, A.M., Nandan, M.O., and Yang, V.W. (2007). The diverse functions of Kruppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays 29, 549-557. Mirabella, A., and Gartenberg, M.R. (1997). Yeast telomeric sequences function as chromosomal anchorage points in vivo. EMBO J 16, 523-533. Miura, T., Mattson, M.P., and Rao, M.S. (2004). Cellular lifespan and senescence signaling in embryonic stem cells. Aging cell 3, 333-343. Nabetani, A., and Ishikawa, F. (2011). Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. Journal of biochemistry 149, 5-14. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101-106. Nikolaou, C., Bermudez, I., Manichanh, C., Garcia-Martinez, J., Guigo, R., Perez-Ortin, J.E., and Roca, J. (2013). Topoisomerase II regulates yeast genes with singular chromatin architectures. Nucleic acids research. Nitiss, J.L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nature reviews Cancer 9, 338-350. Niwa, H., Miyazaki, J., and Smith, A.G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature genetics 24, 372-376. Ogino, H., Nozaki, T., Gunji, A., Maeda, M., Suzuki, H., Ohta, T., Murakami, Y., Nakagama, H., Sugimura, T., and Masutani, M. (2007). Loss of Parp-1 affects gene expression profile in a genome-wide manner in ES cells and liver cells. BMC Genomics 8, 41. Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448, 313-317. Park, S., Patterson, E.E., Cobb, J., Audhya, A., Gartenberg, M.R., and Fox, C.A. (2011). Palmitoylation controls the dynamics of budding-yeast heterochromatin via the telomere-binding protein Rif1. Proceedings of the National Academy of Sciences of the United States of America 108, 14572-14577. Plank, J.L., Wu, J., and Hsieh, T.S. (2006). Topoisomerase IIIalpha and Bloom's helicase can resolve a mobile double Holliday junction substrate through convergent branch migration. Proceedings of the National Academy of Sciences of the United States of America 103, 11118-11123. Pucci, F., Gardano, L., and Harrington, L. (2013). Short telomeres in ESCs lead to unstable differentiation. Cell stem cell 12, 479-486. Realini, C.A., and Althaus, F.R. (1992). Histone shuttling by poly(ADP-ribosylation). J Biol Chem 267, 18858-18865. Reddel, R.R., Bryan, T.M., Colgin, L.M., Perrem, K.T., and Yeager, T.R. (2001). Alternative lengthening of telomeres in human cells. Radiat Res 155, 194-200. Robertson, E.J. (1987). Teratocarcinomas and embryonic stem cells : a practical approach (Oxford ; Washington, D.C.: IRL Press). Roca, J., Ishida, R., Berger, J.M., Andoh, T., and Wang, J.C. (1994). Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proceedings of the National Academy of Sciences of the United States of America 91, 1781-1785. Rolli, V., O'Farrell, M., Menissier-de Murcia, J., and de Murcia, G. (1997). Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry 36, 12147-12154. Roper, S.J., Chrysanthou, S., Senner, C.E., Sienerth, A., Gnan, S., Murray, A., Masutani, M., Latos, P., and Hemberger, M. (2014). ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic acids research 42, 8914-8927. Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., and Stainier, D.Y. (2015). Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230-233. Saharia, A., and Stewart, S.A. (2009). FEN1 contributes to telomere stability in ALT-positive tumor cells. Oncogene 28, 1162-1167. Schiewer, M.J., and Knudsen, K.E. (2014). Transcriptional roles of PARP1 in cancer. Mol Cancer Res 12, 1069-1080. Shay, J.W., Reddel, R.R., and Wright, W.E. (2012). Cancer. Cancer and telomeres--an ALTernative to telomerase. Science 336, 1388-1390. Signon, L., Malkova, A., Naylor, M.L., Klein, H., and Haber, J.E. (2001). Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol 21, 2048-2056. Singer, M.S., and Gottschling, D.E. (1994). TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404-409. Smogorzewska, A., and de Lange, T. (2004). Regulation of telomerase by telomeric proteins. Annual review of biochemistry 73, 177-208. Snapka, R.M., Woo, S.H., Blokhin, A.V., and Witiak, D.T. (1996). Inhibition of topoisomerase II by ICRF-193, the meso isomer of 2,3-bis(2,6-dioxopiperazin-4-yl)butane. Critical dependence on 2,3-butanediyl linker absolute configuration. Biochem Pharmacol 52, 543-549. Stadtfeld, M., Maherali, N., Breault, D.T., and Hochedlinger, K. (2008). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell stem cell 2, 230-240. Stavropoulos, D.J., Bradshaw, P.S., Li, X., Pasic, I., Truong, K., Ikura, M., Ungrin, M., and Meyn, M.S. (2002). The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Human molecular genetics 11, 3135-3144. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. Takai, H., Smogorzewska, A., and de Lange, T. (2003). DNA damage foci at dysfunctional telomeres. Curr Biol 13, 1549-1556. Teng, S.C., Chang, J., McCowan, B., and Zakian, V.A. (2000). Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6, 947-952. Teng, S.C., and Zakian, V.A. (1999). Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19, 8083-8093. Tetreault, M.P., Yang, Y., and Katz, J.P. (2013). Kruppel-like factors in cancer. Nature reviews Cancer 13, 701-713. Tsai, H.J., Huang, W.H., Li, T.K., Tsai, Y.L., Wu, K.J., Tseng, S.F., and Teng, S.C. (2006). Involvement of topoisomerase III in telomere-telomere recombination. J Biol Chem 281, 13717-13723. Vega, L.R., Mateyak, M.K., and Zakian, V.A. (2003). Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 4, 948-959. Wang, J.C. (1996). DNA topoisomerases. Annual review of biochemistry 65, 635-692. Wang, R.C., Smogorzewska, A., and de Lange, T. (2004). Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355-368. Wasserman, R.A., Austin, C.A., Fisher, L.M., and Wang, J.C. (1993). Use of yeast in the study of anticancer drugs targeting DNA topoisomerases: expression of a functional recombinant human DNA topoisomerase II alpha in yeast. Cancer Res 53, 3591-3596. Wasserman, R.A., and Wang, J.C. (1994). Analysis of yeast DNA topoisomerase II mutants resistant to the antitumor drug amsacrine. Cancer Res 54, 1795-1800. Weber, F.A., Bartolomei, G., Hottiger, M.O., and Cinelli, P. (2013). Artd1/Parp1 regulates reprogramming by transcriptional regulation of Fgf4 via Sox2 ADP-ribosylation. Stem cells (Dayton, Ohio) 31, 2364-2373. Wellinger, R.J., and Zakian, V.A. (2012). Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191, 1073-1105. Wilson-Sali, T., and Hsieh, T.S. (2002). Generation of double-stranded breaks in hypernegatively supercoiled DNA by Drosophila topoisomerase IIIbeta, a type IA enzyme. J Biol Chem 277, 26865-26871. Wong, C.W., Hou, P.S., Tseng, S.F., Chien, C.L., Wu, K.J., Chen, H.F., Ho, H.N., Kyo, S., and Teng, S.C. (2010). Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem cells (Dayton, Ohio) 28, 1510-1517. Worland, S.T., and Wang, J.C. (1989). Inducible overexpression, purification, and active site mapping of DNA topoisomerase II from the yeast Saccharomyces cerevisiae. J Biol Chem 264, 4412-4416. Wotton, D., and Shore, D. (1997). A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11, 748-760. Wyatt, H.D., West, S.C., and Beattie, T.L. (2010). InTERTpreting telomerase structure and function. Nucleic acids research 38, 5609-5622. Ye, J., Lenain, C., Bauwens, S., Rizzo, A., Saint-Leger, A., Poulet, A., Benarroch, D., Magdinier, F., Morere, J., Amiard, S., et al. (2010). TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 142, 230-242. Yeager, T.R., Neumann, A.A., Englezou, A., Huschtscha, L.I., Noble, J.R., and Reddel, R.R. (1999). Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59, 4175-4179. Yoshida, T., Gan, Q., and Owens, G.K. (2008). Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol 295, C1175-1182. Zhang, P., Andrianakos, R., Yang, Y., Liu, C., and Lu, W. (2010). Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem 285, 9180-9189. Zhang, W., Chen, X., Kato, Y., Evans, P.M., Yuan, S., Yang, J., Rychahou, P.G., Yang, V.W., He, X., Evers, B.M., et al. (2006). Novel cross talk of Kruppel-like factor 4 and beta-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol 26, 2055-2064. Zhang, W., Geiman, D.E., Shields, J.M., Dang, D.T., Mahatan, C.S., Kaestner, K.H., Biggs, J.R., Kraft, A.S., and Yang, V.W. (2000). The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 275, 18391-18398. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67432 | - |
dc.description.abstract | 端粒酶在癌症和胚胎幹細胞中高度表現,並參與調控基因的完整性,癌症形成和幹細胞潛能性。先前研究發現類Krüppel轉錄因子4(KLF4)活化端粒酶逆轉錄酶(TERT)的表現,並有助於維持胚胎幹細胞中的自我更新。然而,對於KLF4如何調節TERT表現尚未了解透徹。在本篇研究中,我們發現聚(ADP-核糖)聚合酶1(PARP1)為一個新穎的KLF4結合蛋白。 剔除PARP1除了在癌細胞外,在人和小鼠胚胎幹細胞中都能降低TERT的表現和端粒酶活性。抑制PARP1會降低KLF4對結合TERT 啟動子的能力。寡聚(ADP-核糖)聚合酶活性 (oligo(ADP-ribose) polymerase activity) 為PARP1和KLF4的活化TERT所必需的酵素活性。在小鼠胚胎幹細胞中抑制Parp1會降低多能標記物的表現並誘導分化。這些結果表明,PARP1能結合KLF4以活化端粒酶表現和幹細胞多能性,顯示PARP1-KLF4複合物在癌細胞及幹細胞中端粒酶的表現具有正向的調節作用。
染色體的穩定需要端粒來維持,端粒長度在DNA複製後通常被端粒酶延長。在缺乏端粒酶的腫瘤和酵母細胞中,通過替代重組機制維持端粒。先前的研究表明酵母Sgs1和Top3可以一起去除由重組產生的高度負超螺旋。然而,細胞在重組期間消除高正向超螺旋的機制仍不清楚。在本研究中,我們證明抑制拓撲異構酶II (Topoisomerase II; Top2) 參與了端粒重組。 RIF1或RIF2缺失所引起的端粒結構干擾減輕了端粒末端重組中Top2的需求。在人類端粒酶陰性ALT (Alternative lengthening of telomeres, 替代延長端粒)細胞中,TOP2α或TOP2β的抑制能減少ALT相關的PML體,增加端粒失能引起的病灶並導致端粒縮短。當用ICRF-193(TOP2抑制劑)處理ALT細胞時,也能觀察到類似的結果。重要的是,ICRF-193也能阻斷ALT細胞的相關表型,引起端粒縮短,也能抑制小鼠的ALT細胞增殖。總而言之,這些發現意味著TOP2參與在ALT途徑中,可能是透過解決解旋酶前面的高度正向超螺旋結構,而抑制拓撲異構酶II可望能成為預防ALT型癌症的新穎治療方法。 | zh_TW |
dc.description.abstract | Telomerase is highly expressed in cancer and embryonic stem cells and implicated in controlling genome integrity, cancer formation, and stemness. Previous studies identified that Krüppel-like transcription factor 4 (KLF4) activates telomerase reverse transcriptase (TERT) expression and contributes to the maintenance of self-renewal in embryonic stem cells (ESCs). However, little is known about how KLF4 regulates TERT expression. Here, I discover poly(ADP-ribose) polymerase 1 (PARP1) as a novel KLF4-interacting partner. Knockdown of PARP1 reduces TERT expression and telomerase activity not only in cancer cells but also in human and mouse ESCs. Recruitment of KLF4 to TERT promoter is reduced in PARP1 suppressed cells. The poly(ADP-ribose) polymerase activity is dispensable while the oligo(ADP-ribose) polymerase activity is required for the PARP1- and KLF4-mediated TERT activation. Repression of Parp1 in mouse ESCs decreases expression of pluripotent markers and induces differentiation. Expression of Tert rescues Parp1 depletion-mediated changes to maintain their self-renewal. These results suggest that PARP1 recruits KLF4 to activate telomerase expression and stem cell pluripotency, indicating a positive regulatory role of the PARP1-KLF4 complex in telomerase expression in cancer and stem cell.
Telomere maintenance is required for chromosome stability, and telomeres are typically elongated by telomerase following DNA replication. In both tumor and yeast cells that lack telomerase, telomeres are maintained via an alternative recombination mechanism. Previous studies have indicated that yeast Sgs1 and Top3 may work together to remove highly negative supercoils that are generated from recombination. However, the mechanism by which cells eradicate highly positive supercoils during recombination remains unclear. In the present study, I demonstrate that Top2 is involved in telomere-telomere recombination. Disturbance of telomeres structure by RIF1 or RIF2 deletion alleviates the requirement for Top2 in telomere-telomere recombination. In human telomerase-negative ALT (alternative lengthening of telomere) cells, TOP2α or TOP2β knockdown decreases ALT-associated PML (Promyelocytic Leukemia) nuclear bodies, increases telomere dysfunction-induced foci and triggers telomere shortening. Similar results were observed when ALT cells were treated with ICRF-193, a TOP2 inhibitor. Importantly, ICRF-193 treatment blocks ALT-associated phenotypes in vitro, causes telomere shortening, and inhibits ALT cell proliferation in mice. Taken together, these findings imply that TOP2 is involved in the ALT pathway, perhaps by resolving the highly positive supercoil structure at the front of the helicase. Inhibition of topoisomerase II may be a promising therapeutic approach that can be used to prevent cell proliferation in ALT-type cancer cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:31:59Z (GMT). No. of bitstreams: 1 ntu-106-D99445005-1.pdf: 3424331 bytes, checksum: 319604e2e569232a8aca7d0300722f27 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 v
中文摘要 vi Chapter 1: PARP1 Controls KLF4-Mediated Telomerase Expression in Stem Cells and Cancer Cells vi Chapter 2: Topoisomerase II inhibition suppresses the proliferation of telomerase-negative cancers vii Chapter 1: PARP1 Controls KLF4-Mediated Telomerase Expression in Stem Cells and Cancer Cells 1 ABSTRACT 1 INTRODUCTION 3 MATERIALS & METHODS 6 Cell Culture and Transfection 6 Immunoprecipitation and Mass Spectrometry Analysis 8 In vitro Binding Assay and Detection of poly(ADP-ribose) Chains 9 RNA Purification and Quantitative Reverse Transcription PCR (qRT-PCR) 10 siRNA and Telomeric Repeat Amplification Protocol (TRAP) 10 Luciferase Reporter Assay 12 Chromatin Immunoprecipitation (ChIP) Assay 12 Alkaline Phosphatase Staining 13 Statistical Analysis 13 RESULTS 14 Identification of PARP1 as a KLF4 Interacting Protein. 14 PARP1 Regulates KLF4-mediated hTERT Transcription. 15 PARP1 Controls KLF4 Binding to the hTERT Promoter to Facilitate KLF4-dependent Transcriptional Activation. 16 PARP1 is Required for Maintaining TERT Expression in ESCs. 18 The Parp1-Klf4 Interaction Promotes Pluripotency of Mouse ESCs. 20 DISCUSSION 22 Chapter 2: Topoisomerase II inhibition suppresses the proliferation of telomerase-negative cancers 26 ABSTRACT 26 INTRODUCTION 28 MATERIALS AND METHODS 32 Yeast Strain and Plasmid Constructions. 32 Yeast Culture Condition, DNA Preparation, Enzyme Digestion, Gel Electrophoresis, and Southern Analysis. 32 Mammalian Cell Culture, Transfection, RNA Interference, Synthesis of the TOP2 Inhibitor and Western Blot Analysis. 33 Telomere Restriction Fragment (TRF) Analysis. 34 Immunofluorescence Staining and Telomere Fluorescence in Situ Hybridization Staining. 35 In Vivo Pharmacology with Xenografted Mouse Tumors. 36 RESULTS 38 Top2 Contributes to Telomere Recombination in Telomerase-minus (tlc1Δ) Yeast 38 Mutations in RIF1 and RIF2 Restore Telomere-Telomere Recombination in tlc1 top2-ts Cells. 42 Expression of Yeast Top2 and Human TOP2α and TOP2β Restores Type II Survivors in tlc1 top2-ts Cells 44 Knockdown of TOP2α or TOP2β Inhibits Telomere Maintenance in ALT Cells 45 Topoisomerase II Inhibition Decreases ALT Cell Viability, Causes ALT Telomere Shortening, and Inhibits ALT Cancer Progression in Mice 47 DISCUSSION 50 FIGURES AND FIGURE LEGENDS 55 TABLES 97 Table 1. Constructs used in this study. 97 Table 2. Oligonucleotides used in qRT-PCR. 99 Table 3. Oligonucleotides used for ChIP assays. 101 Table 4. Strains used in this study. 102 REFERENCES 103 | |
dc.language.iso | zh-TW | |
dc.title | 尋找端粒維持途徑與藥物標靶的調控者 | zh_TW |
dc.title | To Find Regulators of Telomere Maintenance Pathway and a Druggable Target | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林敬哲,陳佑宗,呂仁,張玉芳 | |
dc.subject.keyword | 幹細胞,端粒?, | zh_TW |
dc.subject.keyword | Stem cells,telomerase, | en |
dc.relation.page | 120 | |
dc.identifier.doi | 10.6342/NTU201700981 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-03 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。