Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6740
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳靜宜(Ching-Yi Chen)
dc.contributor.authorYi-Chen Tsaien
dc.contributor.author蔡宜臻zh_TW
dc.date.accessioned2021-05-17T09:17:13Z-
dc.date.available2012-07-27
dc.date.available2021-05-17T09:17:13Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-26
dc.identifier.citationAgheli N, Kabir M, Berni-Canani S, Petitjean E, Boussairi A, Luo J, Bornet F, Slama G and Rizkalla SW (1998) Plasma lipids and fatty acid synthase activity are regulated by short-chain fructo-oligosaccharides in sucrose-fed insulin-resistant rats, in The Journal of nutrition pp 1283-1288.
Aronsson L, Huang Y, Parini P, Korach-André M, Håkansson J, Gustafsson J, Pettersson S, Arulampalam V and Rafter J (2010) Decreased fat storage by Lactobacillus Paracasei is associated with increased levels of angiopoietin-Like 4 protein (ANGPTL4), in PLoS ONE p e13087.
Backhed F (2005) Host-bacterial mutualism in the human intestine, in Science pp 1915-1920.
Backhed F, Ding H, Wang T, Hooper L, Koh GY, Nagy A, Semenkovich CF, Gordon JI and Hooper L (2004) The gut microbiota as an environmental factor that regulates fat storage, in Science's STKE p 15718.
Bantle JP, Raatz SK, Thomas W and Georgopoulos A (2000) Effects of dietary fructose on plasma lipids in healthy subjects, in The American Journal of Clinical Nutrition pp 1128-1134.
Barceló-Batllori S and Gomis R (2009) Proteomics in obesity research. Proteomics Clinical Applications pp 263-278.
Begley M, Hill C and Gahan CG (2006) Bile salt hydrolase activity in probiotics, in Applied and Environmental Microbiology pp 1729-1738.
Bełtowski J, Wójcicka G, Górny D and Marciniak A (2000) The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity, in Journal of Physiology and Pharmacology : an Official Journal of The Polish Physiological Society pp 883-896.
Bertazzoni Minelli E, Benini A, Marzotto M, Sbarbati A, Ruzzenente O, Ferrario R, Hendriks H and Dellaglio F (2004) Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods, in International Dairy Journal pp 723-736.
Boden G and Shulman G (2002) Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β‐cell dysfunction, in European Journal of Clinical Investigation pp 14-23.
Bonnefont-Rousselot D, Bastard JP, Jaudon MC and Delattre J (2000) Consequences of the diabetic status on the oxidant/antioxidant balance, in Diabetes and metabolism pp 163-176.
Bronk JR (1999) Human metabolism: functional diversity and integration. Addison Wesley Longmann, Singapore.
Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR and Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia, in Diabetologia pp 2374-2383.
Chan W and Dehority B (1999) Production of Ruminococcus flavefaciens growth inhibitor (s) by Ruminococcus albus, in Animal Feed Science and Technology pp 61-71.
Chen CY, Yu C, Chen SW, Chen BJ and Wang HT (2012) Effect of yeast with bacteriocin from rumen bacteria on growth performance, caecal flora, caecal fermentation and immunity function of broiler chicks, in The Journal of Agricultural Science pp 1-11.
Chen J, Stevenson DM and Weimer PJ (2004) Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens, in Applied and Environmental Microbiology pp 3167-3170.
Chicco A, D’Alessandro ME, Karabatas L, Pastorale C, Basabe JC and Lombardo YB (2003) Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet, in The Journal of nutrition pp 127-133.
Cleveland J, Montville TJ, Nes IF and Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation, in International Journal of Food Microbiology pp 1-20.
Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH and Brand-Miller J (2005) Origins and evolution of the Western diet: health implications for the 21st century, in The American Journal of Clinical Nutrition pp 341-354.
Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C and Gahan CGM (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118, in Proceedings of the National Academy of Sciences pp 7617-7621.
Cotter PD, Hill C and Ross RP (2005) Bacteriocins: developing innate immunity for food, in Nature Reviews Microbiology pp 777-788.
Daubioul CA, Taper HS, Laurent D and Delzenne NM (2000) Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats, in The Journal of Nutrition pp 1314-1319.
Davidson MH, Maki KC, Synecki C, Torri SA and Drennan KB (1998) Effects of dietary inulin on serum lipids in men and women with hypercholesterolemia, in Nutrition Research pp 503-517.
de Ferranti S and Mozaffarian D (2008) The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences, in Clinical Chemistry pp 945-955.
de Smet I, de Boever P and Verstraete W (1998) Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity, in British Journal of Nutrition pp 185-194.
Defronzo R, Simonson D, Ferrannini E and Barrett E (1981) Insulin resistance: a universal finding in diabetic states., in Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften p 223.
Dell, Tranchida F, Tchiakpe L, Rakotoniaina Z, Deyris V, Ravion O and Hiol A (2012) Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats, in Journal of Zhejiang University Science B pp 307-317.
Delmée E, Cani PD, Gual G, Knauf C, Burcelin R, Maton N and Delzenne NM (2006) Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice, in Life Sciences pp 1007-1013.
Delzenne NM and Kok NN (1999) Biochemical basis of oligofructose-induced hypolipidemia in animal models., in The Journal of nutrition pp 1467S-1470S.
Demigné C, Morand C, Levrat MA, Besson C, Moundras C and Rémésy C (1995) Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes, in British Journal of Nutrition pp 209-219.
Diakogiannaki E, Welters HJ and Morgan NG (2008) Differential regulation of the endoplasmic reticulum stress response in pancreatic β -cells exposed to long-chain saturated and monounsaturated fatty acids, in Journal of Endocrinology pp 553-563.
Diamant M, Blaak E and Vos W (2011) Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?, in Obesity Reviews pp 272-281.
DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA and Rittmann BE (2008) Gut microbiota and its possible relationship with obesity, in Mayo Clinic Proceedings pp 460-469.
Diez-Gonzalez F (2007) Applications of bacteriocins in livestock, in Current issues in intestinal microbiology p 15.
Dulloo AG, Gubler M, Montani JP, Seydoux J and Solinas G (2004) Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity, in International Journal of Obesity pp S29-S37.
Eccleston HB, Andringa KK, Betancourt AM, King AL, Mantena SK, Swain TM, Tinsley HN, Nolte RN, Nagy TR and Abrams GA (2011) Chronic exposure to a high-fat diet induces hepatic steatosis, impairs nitric oxide bioavailability, and modifies the mitochondrial proteome in mice, in Antioxidants and Redox Signaling pp 447-459.
Esposito E, Iacono A, Bianco G, Autore G, Cuzzocrea S, Vajro P, Canani RB, Calignano A, Raso GM and Meli R (2009) Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats, in Journal of Nutrition pp 905-911.
Francini F, Castro MC, Schinella G, García ME, Maiztegui B, Raschia MA, Gagliardino JJ and Massa ML (2010) Changes induced by a fructose-rich diet on hepatic metabolism and the antioxidant system, in Life Sciences pp 965-971.
Frayn KN (1996) Metabolic regulation: a human perspective. Portland Press, London.
Funaki M (2009) Saturated fatty acids and insulin resistance, in The Journal of Medical Investigation pp 88-92.
Gaidhu MP, Anthony NM, Patel P, Hawke TJ and Ceddia RB (2010) Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK, in American Journal of Physiology-Cell Physiology pp C961-C971.
Garbarino J and Sturley SL (2009) Saturated with fat: new perspectives on lipotoxicity, in Current Opinion in Clinical Nutrition and Metabolic Care pp 110-116.
Girousse A and Langin D (2012) Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models, in International Journal of Obesity pp 581-594.
Grundy SM (1997) What is the desirable ratio of saturated, polyunsaturated, and monounsaturated fatty acids in the diet?, in The American Journal of Clinical Nutrition pp 988S-990S.
Guilherme A, Virbasius JV, Puri V and Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes, in Nature Reviews Molecular Cell Biology pp 367-377.
Harmancey R, Wilson CR, Wright NR and Taegtmeyer H (2010) Western diet changes cardiac acyl-CoA composition in obese rats: A potential role for hepatic lipogenesis, in Journal of Lipid Research pp 1380-1393.
Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism, in Nutrition Reviews pp 133-157.
Heath LS, Heath HE, LeBlanc PA, Smithberg S, Dufour M, Simmonds RS and Sloan GL (2004) The streptococcolytic enzyme zoocin A is a penicillin‐binding protein, in FEMS Microbiology Letters pp 205-211.
Hsieh YH (2011) Oral administration of bacteriocin, albusin B, improved fatty acid oxidation, in Animal Science and Technology, National Taiwan University Taiwan.
Hylemon PB, Fricke RJ, Kubaska WM, Cohen BI and Mosbach EH (1983) Metabolism of bile acid oxazoline derivatives by hepatocyte monolayer cultures and intestinal anaerobic bacteria, in Steroids pp 105-114.
Ikemoto S, Takahashi M, Tsunoda N, Maruyama K, Itakura H and Ezaki O (1996) High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils, in Metabolism pp 1539-1546.
Isolauri E, Salminen S and Ouwehand AC (2004) Probiotics, in Best Practice and Research Clinical Gastroenterology pp 299-313.
Ji J, Zhang L, Wang P, Mu Y, Zhu X, Wu Y, Yu H, Zhang B, Chen S and Sun X (2005) Saturated free fatty acid, palmitic acid, induces apoptosis in fetal hepatocytes in culture, in Experimental and Toxicologic Pathology pp 369-376.
Jump DB (2011) Fatty acid regulation of hepatic lipid metabolism, in Current Opinion in Clinical Nutrition and Metabolic Care pp 115-120.
Kadooka Y, Ogawa A, Ikuyama K and Sato M (2011) The probiotic Lactobacillus gasseri SBT2055 inhibits enlargement of visceral adipocytes and upregulation of serum soluble adhesion molecule (sICAM-1) in rats, in International Dairy Journal pp 623-627.
Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, Okano M, Kagoshima M and Tsuchida T (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial, in European Journal of Clinical Nutrition pp 636-643.
Kalmokoff M and Teather R (1997) Isolation and characterization of a bacteriocin (Butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens, in Applied and Environmental Microbiology pp 394-402.
Kalmokoff ML, Bartlett F and Teather RM (1996) Are ruminal bacteria armed with Bacteriocins?, in Journal of Dairy Science pp 2297-2306.
Khosla P and Sundram K (1996) Effects of dietary fatty acid composition on plasma cholesterol, in Progress in Lipid Research p 93.
Klaenhammer TR (1998) Functional activities of Lactobacillus probiotics: Genetic mandate, in International Dairy Journal pp 497-505.
Klaver F and Meer R (1993) The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity, in Applied and Environmental Microbiology pp 1120-1124.
Kondo S, Xiao JZ, Satoh T, Odamaki T, Takahashi S, Sugahara H, Yaeshima T, Iwatsuki K, Kamei A and Abe K (2010) Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity, in Bioscience, Biotechnology, and Biochemistry pp 1656-1661.
Kopelman PG (2000) Obesity as a medical problem, in Nature London pp 635-643.
Lee Y, Hirose H, Ohneda M, Johnson J, McGarry JD and Unger RH (1994) Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships, in Proceedings of the National Academy of Sciences p 10878.
Lelliott C and Vidal-Puig AJ (2004) Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation, in International Journal of Obesity pp S22-S28.
Ley RE, Turnbaugh PJ, Klein S and Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity, in Nature pp 1022-1023.
Lin CM (2007) Influence of concentrate to forage ratio adjustment and dietary microorganism supplement on intake and fecal conformation in Formosan Serows, in Animal Science and Technology, National Taiwan University, Taiwan.
Lohans CT, Lohans CT, Vederas JC and Vederas JC (2012) Development of Class IIa bacteriocins as therapeutic agents, in International Journal of Microbiology pp 1-13.
Macpherson AJ and Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system, in Nature Reviews Immunology pp 478-485.
Malhi H and Gores G (2008) Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease, in Seminars in Liver Disease pp 360-369.
Mantena SK, King AL, Andringa KK, Eccleston HB and Bailey SM (2008) Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases, in Free Radical Biology and Medicine pp 1259-1272.
Mantovani HC and Russell JB (2003) Inhibition of Listeria monocytogenes by bovicin HC5, a bacteriocin produced by Streptococcus bovis HC5, in International Journal of Food Microbiology pp 77-83.
Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Miyamoto K and Kaneko S (2008) Increased oxidative stress precedes the onset of high-fat diet–induced insulin resistance and obesity, in Metabolism pp 1071-1077.
Mattson FH and Grundy SM (1985) Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man, in Journal of Lipid Research pp 194-202.
Mei S, Ni H, Manley S, Bockus A, Kassel KM, Luyendyk JP, Copple BL and Ding W (2011) Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes, in Journal of Pharmacology and Experimental Therapeutics pp 487-498.
Mensink RP and Katan MB (1992) Effect of dietary fatty acids on serum lipids and lipoproteins: a meta-analysis of 27 trials, in Arteriosclerosis, Thrombosis, and Vascular Biology pp 911-919.
Michels KB and Schulze MB (2005) Can dietary patterns help us detect diet–disease associations?, in Nutrition Research Reviews p 241.
Mizote A, Taniguchi Y, Takei Y, Koya-Miyata S, Kohno K, Iwaki K, Kurose M, Oku K, Chaen H and Fukuda S (2009) Lactosucrose inhibits body fat accumulation in rats by decreasing intestinal lipid absorption, in Bioscience, Biotechnology, and Biochemistry pp 582-587.
Murphy EF, Cotter PD, Healy S, Marques TM, Sullivan O, Fouhy F, Clarke SF, Toole PW, Quigley EM, Stanton C, Ross PR, Doherty RM and Shanahan F (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models, in Gut pp 1635-1642.
Murphy EF, Cotter PD, Hogan A, Sullivan O, Joyce A, Fouhy F, Clarke SF, Marques TM, Toole PW, Stanton C, Quigley EMM, Daly C, Ross PR, Doherty RM and Shanahan F (2012) Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity, in Gut.
Musso G, Gambino R, Cassader M and Gambino R (2011) Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes, in Annual Review of Medicine pp 361-380.
Naito E, Yoshida Y, Makino K, Kounoshi Y, Kunihiro S, Takahashi R, Matsuzaki T, Miyazaki K and Ishikawa F (2011) Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice, in Journal of Applied Microbiology pp 650-657.
Nascimento FA, Barbosa-da-Silva S, Fernandes-Santos C, Mandarim-de-Lacerda CA and Aguila MB (2010) Adipose tissue, liver and pancreas structural alterations in C57BL/6 mice fed high-fat-high-sucrose diet supplemented with fish oil (n-3 fatty acid rich oil), in Experimental and Toxicologic Pathology pp 17-25.
Neuschwander-Tetri BA (2010) Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites, in Hepatology pp 774-788.
Nigutová K, Serenčová L, Piknová M, Javorský P and Pristaš P (2008) Heterologous expression of functionally active enterolysin A, class III bacteriocin from Enterococcus faecalis, in Escherichia coli, in Protein Expression and Purification pp 20-24.
Nilsen T, Nes IF and Holo H (2003) Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333, in Applied and Environmental Microbiology pp 2975-2984.
O’sullivan L, Ross R and Hill C (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality, in Biochimie pp 593-604.
Odenyo AA, Mackie RI, Stahl DA and White BA (1994) The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production., in Applied and Environmental Microbiology pp 3688-3696.
Ooi L and Liong M (2010) Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro findings, in International Journal of Molecular Sciences pp 2499-2522.
Parizkova J, Chin MK, Chia M and Yang J (2007) An international perspective on obesity, health and physical activity: current trends and challenges in China and Asia, in Journal of Exercise Science and Fitness pp 7-23.
Parnell JA and Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults, in American Journal of Clinical Nutrition pp 1751-1759.
Pereira DI and Gibson GR (2002) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans, in Critical Reviews in Biochemistry and Molecular Biology pp 259-281.
Perin N, Keelan M, Jarocka-Cyrta E, Clandinin MT and Thomson AB (1997) Ontogeny of intestinal adaptation in rats in response to isocaloric changes in dietary lipids, in The American journal of physiology pp G713-720.
Rayssiguier Y, Gueux E, Nowacki W, Rock E and Mazur A (2006) High fructose consumption combined with low dietary magnesium intake may increase the incidence of the metabolic syndrome by inducing inflammation, in Magnesium research : official organ of the International Society for the Development of Research on Magnesium pp 237-243.
Rebolledo O, Marra C, Raschia A, Rodriguez S and Gagliardino J (2008) Abdominal adipose tissue: Early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet, in Hormone and Metabolic Research pp 794-800.
Reiser S, Bickard MC, Hallfrisch J, Michaelis OE and Prather ES (1981) Blood lipids and their distribution in lipoproteins in hyperinsulinemic subjects fed three different levels of sucrose., in The Journal of nutrition p 1045.
Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, Fantoni LI, Marra F, Bertolotti M, Banni S, Lonardo A, Carulli N and Loria P (2009) Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes, in Journal of Gastroenterology and Hepatology pp 830-840.
Riley MA and Wertz JE (2002a) Bacteriocin diversity: ecological and evolutionary perspectives, in Biochimie pp 357-364.
Riley MA and Wertz JE (2002b) Bacteriocins: evolution, ecology, and application, in Annual Reviews in Microbiology pp 117-137.
Rolfe RD (1984) Interactions among microorganisms of the indigenous intestinal flora and their influence on the host, in Review of Infectious Diseases pp S73-S79.
Rolo AP, Teodoro JS and Palmeira CM (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis, in Free Radical Biology and Medicine pp 59-69.
Sang Y and Blecha F (2008) Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics, in Animal Health Research Reviews pp 227-235.
Sato M, Uzu K, Yoshida T, Hamad EM, Kawakami H, Matsuyama H, El-Gawad IAA and Imaizumi K (2008) Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats, in British Journal of Nutrition.
Schaefer EJ, Gleason JA and Dansinger ML (2009) Dietary fructose and glucose differentially affect lipid and glucose homeostasis, in Journal of Nutrition pp 1257S-1262S.
Schrauwen P (2007) High-fat diet, muscular lipotoxicity and insulin resistance, in Proceedings of the Nutrition Society pp 33-41.
Shepherd J, Packard CJ, Grundy SM, Yeshurun D, Gotto A and Taunton O (1980) Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man., in Journal of Lipid Research pp 91-99.
Simpson JM, Martineau B, Jones WE, Ballam JM and Mackie RI (2002) Characterization of fecal bacterial populations in Canines: effects of age, breed and dietary fiber, in Microbial Ecology pp 186-197.
Stanhope KL and Havel PJ (2008) Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance, in Current opinion in lipidology p 16.
Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L and Havel PJ (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans, in The Journal of Clinical Investigation pp 1322-1334.
Swanson JE, Laine D, Thomas W and Bantle JP (1992) Metabolic effects of dietary fructose in healthy subjects, in The American journal of clinical nutrition pp 851-856.
Tagg J, Dajani A and Wannamaker L (1976) Bacteriocins of gram-positive bacteria, in Bacteriological reviews p 722.
Tanida M, Shen J, Maeda K, Horii Y, Yamano T, Fukushima Y and Nagai K (2008) High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats, in Obesity Research and Clinical Practice pp 159-169.
Tappy L, Lê KA, Tran C and Paquot N (2010) Fructose and metabolic diseases: new findings, new questions, in Nutrition pp 1044-1049.
Toba T, Yoshioka E and Itoh T (1991) Acidophilucin A, a new heat-labile bacteriocin produced by Lactobacillus acidophilus LAPT 1060, in Letters in Applied Microbiology pp 106-108.
Trauner M, Arrese M and Wagner M (2010) Fatty liver and lipotoxicity, in Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids pp 299-310.
Turnbaugh PJ, Bäckhed F, Fulton L and Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome, in Cell Host and Microbe pp 213-223.
Unger RH (2002) Lipotoxic diseases, in Annual Review of Medicine pp 319-336.
Vázquez-Vela MEF, Torres N, Arm, Tovar oR and Tovar AR (2008) White adipose tissue as endocrine organ and its role in obesity, in Archives of Medical Research pp 715-728.
van Herpen NA and Schrauwen-Hinderling VB (2008) Lipid accumulation in non-adipose tissue and lipotoxicity, in Physiology and Behavior pp 231-241.
Vaughan EE, Daly C and Fitzgerald GF (1992) Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829, in Journal of Applied Microbiology pp 299-308.
Venema K, Venema G and Kok J (1995) Lactococcal bacteriocins: mode of action and immunity, in Trends in Microbiology pp 299-304.
Wang HT, Li YH, Chou IP, Hsieh YH, Chen BJ and Chen CY (2012) Albusin B modulates lipid metabolism and increases antioxidant defense in broiler chickens by a proteomic approach, in Journal of the Science of Food and Agriculture.
Wang HT, Yu C, Hsieh YH, Chen SW, Chen BJ and Chen CY (2011) Effects of albusin B (a bacteriocin) of Ruminococcus albus 7 expressed by yeast on growth performance and intestinal absorption of broiler chickens-its potential role as an alternative to feed antibiotics, in Journal of the Science of Food and Agriculture pp 2338-2343.
Wei Y, Wang D and Pagliassotti MJ (2007) Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells, in Molecular and Cellular Biochemistry pp 105-113.
Wende AR and Abel ED (2010) Lipotoxicity in the heart, in Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids pp 311-319.
Whaley DN, Wiggs LS, Miller PH, Srivastava PU and Miller JM (1995) Use of presumpto plates to identify anaerobic bacteria, in Journal of Clinical Microbiology pp 1196-1202.
Wilson C, Tran M, Salazar K, Young M and Taegtmeyer H (2007) Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats, in Biochemical Journal p 457.
Wree A, Kahraman A, Gerken G and Canbay A (2011) Obesity affects the liver – the link between adipocytes and hepatocytes, in Digestion pp 124-133.
Yang HW (2008) Application of yeast expression system for production of bacteriocin form rumen bacteria, in Graduate Institute of Biotechnology, Chinese Culture University, Taiwan.
Yeh C, Chang H and Pan W (2011) Time trend of obesity, the metabolic syndrome and related dietary pattern in Taiwan: from NAHSIT 1993-1996 to NAHSIT 2005-2008, in Asia Pacific Journal of Clinical Nutrition pp 292-300.
Yin Y (2010) Effects of four Bifidobacterium on obesity in high-fat diet induced rats, in World Journal of Gastroenterology p 3394.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6740-
dc.description.abstract肥胖被歸為二十一世紀全球性流行病且與代謝症候群相關,其增加第二型糖尿病與肝炎的風險,因此近年來逐漸備受重視。肥胖之盛行源於現代人生活型態的改變,隨著飲食習慣變遷為高糖高脂之西方飲食,導致人們普遍有肥胖問題。
Albusin B為分子量32 kDa且由Ruminococcus albus 7所分泌之細菌素,藉由Saccharomyces cerevisiae表現系統進行量產。在先前研究發現,餵予健康小鼠albusin B會促進其脂肪代謝並降低小鼠體重,然而albusin B對於肥胖小鼠能量代謝之效應尚未被探討。故本試驗以7週齡C57BL/6公鼠為試驗模式,餵飼小鼠西方飼糧為期20週以誘發其肥胖。肥胖小鼠進而逢機分為3組,食鹽水組(WS),低濃度albusin B組 (0.125 μg albusin B /g體重; WLA),與高濃度albusin B組 (0.625 μg albusin B /g體重; WHA)。小鼠予以灌食食鹽水或albusin B連續4週後犧牲。結果顯示,西方飼糧餵飼20週後之小鼠呈現病態肥胖,其血糖與血脂異常,且具有脂肪肝與脂肪細胞肥大現象。灌食低濃度albusin B顯著降低肥胖小鼠之體重、血液總膽固醇與低密度脂蛋白含量,並且減少肝臟脂肪堆積與脂肪細胞大小。高濃度albusin B無法調節肥胖小鼠之體重與血液生化值,然可降低肥胖小鼠之脂肪細胞大小。灌食albusin B亦降低小腸、肝臟與肌肉對於脂肪酸之吸收。相較於WS組,WLA組小鼠具有較高肝臟與白色脂肪組織之脂質氧化作用,以及較低白色脂肪組織與肌肉之脂質合成作用。另外,albusin B處理降低肥胖小鼠對果糖之吸收且WLA組具有較高肝臟與肌肉之糖解作用。由呼吸商結果證實灌食albusin B可使肥胖小鼠之能量利用轉移至較多的碳水化合物。此外,灌食albusin B可增加抗氧化能力與盲腸內Bifidobacterium之含量。
綜觀上述,口服0.125 μg /g體重albusin B可降低肥胖小鼠之體重,促進其脂質代謝、碳水化合物之利用與抗氧化能力,並改善其盲腸菌相,進而有效改善飲食引起肥胖之小鼠健康。
zh_TW
dc.description.abstractObesity is one of the major worldwide epidemics and has became a public health problem of the 21st century because of its association with metabolic syndrome, which increases the risks of developing type 2 diabetes and hepatic steatosis. The expansive prevalence of obesity is caused by the dramatic changes of lifestyle. Western diet, made up of high-fat and high-sugars, is the major dietary concern for obesity prevalence.
Albusin B is a 32-kDa bacteriocin from the ruminal bacterium Ruminococcus albus 7 and mass-produced by Saccharomyces cerevisiae expression system. In the previous study, administration of albusin B caused a decrease in body weight (BW) and plasma triglycerides (TG) levels, and improved lipid metabolism of healthy BALB/C mice. However, the effect of albusin B on energy homeostasis of obese mice has not been elucidated. In this study, 7-week-old C57BL/6 male mice were fed with Western diet for 20 weeks to induce obesity. Then the obese mice (W) were randomly assigned to 3 groups: saline (WS), WLA [0.125 μg albusin B /g body weight (BW)], and WHA (0.625 μg albusin B /g BW). Saline / albusin B was orally administrated for extra 4 weeks then sacrificed. Results showed that Western diet induced morbid obesity in mice, including hyperglycemia, dyslipidemia, fatty liver, and hypertrophy of adipocytes. Oral administration of 0.125 μg albusin B/g BW significantly reduced BW, plasma levels of total cholesterol (TC) and low density lipoprotein (LDL), hepatic lipid accumulation, and adipocyte size. High concentration of albusin B did not change BW and lipid profiles in plasma, but reduced adipocyte size. Administration of albusin B decreased fatty acid absorption in the ileum, liver, and muscle. Compared with WS group, WLA group had higher lipid oxidation rate in the liver and white adipose tissue (WAT) and lower lipid synthesis in the WAT and muscle. WHA group had a decrease of lipogenic gene expressions in the WAT as compared to WS group. Moreover, albusin B treatment suppressed hepatic fructose uptake and WLA mice had higher glycolytic gene expressions in the liver and muscle. Administration of albusin B increased the respiratory quotient of obese mice, demonstrated that a higher efficiency of carbohydrate utilization for energy expenditure. Albusin B treatments also promoted systemic antioxidant defense and increased caecal counts of Bifidobacterium.
Taken together, oral administration of 0.125 μg albusin B/g BW albusin B resulted in body weight loss and promoted lipid metabolism, carbohydrate utilization, and antioxidant capacity, and elevated caecal population of Bifidobacterium in diet-induced obese mice. These results therefore partially improve the health of obese mice.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:17:13Z (GMT). No. of bitstreams: 1
ntu-101-R99626017-1.pdf: 1476182 bytes, checksum: 2d1b6cd58781b0b2aa758c09086cf475 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 ...........................................................................................................................I
ABSTRACT ..................................................................................................................III
CONTENTS ....................................................................................................................V
LIST OF FIGURES...................................................................................................VIII
LIST OF TABLES ..........................................................................................................X
CHAPTER 1 Literature Review ................................................................................... 1
I Obesity...........................................................................................................1
I.1 Effect of Dietary Fat ......................................................................... 2
I.2 Effect of Dietary Carbohydrate ........................................................ 7
I.3 Effect of Western diet ..................................................................... 10
I.4 Lipotoxicity .....................................................................................11
I.5 Gut Microflora................................................................................ 16
II Becteriocin and Albusin B ..........................................................................18
II.1 Bacteriocin...................................................................................... 18
II.2 Albusin B........................................................................................ 21
CHAPTER 2 Materials and methods ......................................................................... 24
I Animal treatment.........................................................................................24
VI
II The preparation of albusin B .......................................................................25
III Blood biochemical parameters assay ..........................................................25
IV Histological study........................................................................................26
V mRNA extraction and real-time polymerase chain reaction (PCR) ............27
VI Respiratory quotient (RQ) assay .................................................................30
VII Oxygen radical absorbance capacity (ORAC) assay...................................30
VIII Analysis of caecal microbial population .....................................................31
IX Statistical analysis .......................................................................................32
CHAPTER 3 Results .................................................................................................... 43
I Western diet induced morbid obesity in mice .............................................43
II Effect of albusin B on physiological parameters of DIO mice ...................46
III Effect of albusin B on lipid metabolism of DIO mice ................................50
IV Effect of albusin B on carbohydrate metabolism of DIO mice...................55
V Albusin B increased the carbohydrate utilization of DIO mice ..................58
VI Effect of albusin B on systemic antioxidant capacity of DIO mice ............58
VII Effect of albusin B on gut microflora of DIO mice ....................................61
CHAPTER 4 Discussion............................................................................................... 63
I Body weight-lowering effect.......................................................................63
II Cholesterol-lowering effect.........................................................................65
VII
III Albusin B promotes lipid oxidation and suppresses lipid synthesis ...........67
IV Albusin B enhances carbohydrate utilization..............................................68
V Albusin B increases systemic antioxidant defense......................................69
CHAPTER 5 Reference................................................................................................ 70
dc.language.isoen
dc.title細菌素 albusin B 對於肥胖小鼠脂肪與碳水化合物利用之影響zh_TW
dc.titleEffect of albusin B on the lipid and carbohydrate utilization of obese miceen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐濟泰(Jih-Tay Hsu),王翰聰(Han-Tsung Wang),陳洵一(Shuen-Ei Chen)
dc.subject.keywordAlbusin B,飲食引起肥胖,脂質氧化作用,碳水化合物利用,腸道菌相,zh_TW
dc.subject.keywordAlbusin B,Diet-induced obesity,Lipid oxidation,Carbohydrate utilization,Gut microflora,en
dc.relation.page85
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf1.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved