Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67390
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉逸軒
dc.contributor.authorQuan-Liang Jianen
dc.contributor.author簡銓良zh_TW
dc.date.accessioned2021-06-17T01:30:19Z-
dc.date.available2020-08-30
dc.date.copyright2017-08-30
dc.date.issued2017
dc.date.submitted2017-08-04
dc.identifier.citationAlsalameh, S., Amin, R., Gemba, T., and Lotz, M. (2004). Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50, 1522-1532.
Arokoski, J., Kiviranta, I., Jurvelin, J., Tammi, M., and Helminen, H.J. (1993). Long-distance running causes site-dependent decrease of cartilage glycosaminoglycan content in the knee joints of beagle dogs. Arthritis Rheum 36, 1451-1459.
Barbero, A., Grogan, S., Schafer, D., Heberer, M., Mainil-Varlet, P., and Martin, I. (2004). Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12, 476-484.
Becker, T., Wullimann, M.F., Becker, C.G., Bernhardt, R.R., and Schachner, M. (1997). Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377, 577-595.
Bennell, K.L., Malcolm, S.A., Khan, K.M., Thomas, S.A., Reid, S.J., Brukner, P.D., Ebeling, P.R., and Wark, J.D. (1997). Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone 20, 477-484.
Bird, N.C., and Mabee, P.M. (2003). Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn 228, 337-357.
Borday, V., Thaeron, C., Avaron, F., Brulfert, A., Casane, D., Laurenti, P., and Geraudie, J. (2001). evx1 transcription in bony fin rays segment boundaries leads to a reiterated pattern during zebrafish fin development and regeneration. Dev Dyn 220, 91-98.
Bosomworth, N.J. (2009). Exercise and knee osteoarthritis: benefit or hazard? Can Fam Physician 55, 871-878.
Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331, 889-895.
Candela, M.E., Cantley, L., Yasuaha, R., Iwamoto, M., Pacifici, M., and Enomoto-Iwamoto, M. (2014). Distribution of slow-cycling cells in epiphyseal cartilage and requirement of beta-catenin signaling for their maintenance in growth plate. J Orthop Res 32, 661-668.
Claassen, H., Schunke, M., and Kurz, B. (2005). Estradiol protects cultured articular chondrocytes from oxygen-radical-induced damage. Cell Tissue Res 319, 439-445.
Cohen, S.P., LaChappelle, A.R., Walker, B.S., and Lassiter, C.S. (2014). Modulation of estrogen causes disruption of craniofacial chondrogenesis in Danio rerio. Aquat Toxicol 152, 113-120.
Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., Bridgett, L., Williams, S., Guillemin, F., Hill, C.L., et al. (2014). The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73, 1323-1330.
Crotwell, P.L., Clark, T.G., and Mabee, P.M. (2001). Gdf5 is expressed in the developing skeleton of median fins of late-stage zebrafish, Danio rerio. Dev Genes Evol 211, 555-558.
Crotwell, P.L., and Mabee, P.M. (2007). Gene expression patterns underlying proximal-distal skeletal segmentation in late-stage zebrafish, Danio rerio. Dev Dynam 236, 3111-3128.
Cubbage, C.C., and Mabee, P.M. (1996). Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, cyprinidae). J Morphol 229, 121-160.
Davidson, D., Blanc, A., Filion, D., Wang, H., Plut, P., Pfeffer, G., Buschmann, M.D., and Henderson, J.E. (2005). Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem 280, 20509-20515.
Davidson, E.A., and Small, W. (1963). Metabolism in vivo of connective-tissue mucopolysaccharides. I. Chondroitin sulfate C and keratosulfate of nucleus pulposus. Biochim Biophys Acta 69, 445-452.
Dowthwaite, G.P., Bishop, J.C., Redman, S.N., Khan, I.M., Rooney, P., Evans, D.J., Haughton, L., Bayram, Z., Boyer, S., Thomson, B., et al. (2004). The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117, 889-897.
Du, S.J., Frenkel, V., Kindschi, G., and Zohar, Y. (2001). Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 238, 239-246.
Estevao, M.D., Silva, N., Redruello, B., Costa, R., Gregorio, S., Canario, A.V., and Power, D.M. (2011). Cellular morphology and markers of cartilage and bone in the marine teleost Sparus auratus. Cell Tissue Res 343, 619-635.
Evans, D.J., and Noden, D.M. (2006). Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn 235, 1310-1325.
Ferry, B., Lespessailles, E., Rochcongar, P., Duclos, M., and Courteix, D. (2013). Bone health during late adolescence: effects of an 8-month training program on bone geometry in female athletes. Joint Bone Spine 80, 57-63.
Fiaz, A.W., Leon-Kloosterziel, K.M., Gort, G., Schulte-Merker, S., van Leeuwen, J.L., and Kranenbarg, S. (2012). Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio). PLoS One 7, e34072.
Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I., and Frolova, G.P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6, 230-247.
Geraudie, J., and Singer, M. (1992). The fish fin regenerate. Monogr Dev Biol 23, 62-72.
Gilbert, M.J., Zerulla, T.C., and Tierney, K.B. (2014). Zebrafish (Danio rerio) as a model for the study of aging and exercise: physical ability and trainability decrease with age. Exp Gerontol 50, 106-113.
Gilbert, S.F. (2014). Developmental biology, Tenth edn (Andrew D. Sinauer).
Grogan, S.P., Miyaki, S., Asahara, H., D'Lima, D.D., and Lotz, M.K. (2009). Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11, R85.
Grunder, T., Gaissmaier, C., Fritz, J., Stoop, R., Hortschansky, P., Mollenhauer, J., and Aicher, W.K. (2004). Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 12, 559-567.
Hayes, A.J., Mitchell, R.E., Bashford, A., Reynolds, S., Caterson, B., and Hammond, C.L. (2013a). Expression of glycosaminoglycan epitopes during zebrafish skeletogenesis. Dev Dyn 242, 778-789.
Hayes, A.J., Reynolds, S., Nowell, M.A., Meakin, L.B., Habicher, J., Ledin, J., Bashford, A., Caterson, B., and Hammond, C.L. (2013b). Spinal deformity in aged zebrafish is accompanied by degenerative changes to their vertebrae that resemble osteoarthritis. PLoS One 8, e75787.
Hedlund, H., Hedbom, E., Heineg rd, D., Mengarelli-Widholm, S., Reinholt, F.P., and Svensson, O. (1999). Association of the aggrecan keratan sulfate-rich region with collagen in bovine articular cartilage. J Biol Chem 274, 5777-5781.
Hoegh-Andersen, P., Tanko, L.B., Andersen, T.L., Lundberg, C.V., Mo, J.A., Heegaard, A.M., Delaisse, J.M., and Christgau, S. (2004). Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Research Therapy 6, R169-R180.
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503.
Huang, W.C., Hsieh, Y.S., Chen, I.H., Wang, C.H., Chang, H.W., Yang, C.C., Ku, T.H., Yeh, S.R., and Chuang, Y.J. (2010). Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish 7, 297-304.
Hughes, L.C., Archer, C.W., and ap Gwynn, I. (2005). The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. Eur Cell Mater 9, 68-84.
Hulmes, D.J., Jesior, J.C., Miller, A., Berthet-Colominas, C., and Wolff, C. (1981). Electron microscopy shows periodic structure in collagen fibril cross sections. Proc Natl Acad Sci U S A 78, 3567-3571.
Hunziker, E.B., Kapfinger, E., and Geiss, J. (2007). The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis Cartilage 15, 403-413.
Hur, M., Gistelinck, C.A., Huber, P., Lee J., Thompson M.H. (2017). microCT-based skeletal phenomics in zebrafish reveals virtues of deep phenotyping at the whole-organism scale. bioRxiv.
Hyldahl, R.D., Evans, A., Kwon, S., Ridge, S.T., Robinson, E., Hopkins, J.T., and Seeley, M.K. (2016). Running decreases knee intra-articular cytokine and cartilage oligomeric matrix concentrations: a pilot study. Eur J Appl Physiol 116, 2305-2314.
Inada, M., Yasui, T., Nomura, S., Miyake, S., Deguchi, K., Himeno, M., Sato, M., Yamagiwa, H., Kimura, T., Yasui, N., et al. (1999). Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214, 279-290.
Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., and Izpisua Belmonte, J.C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606-609.
Joyce, M.E., Roberts, A.B., Sporn, M.B., and Bolander, M.E. (1990). Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110, 2195-2207.
Jurvelin, J., Helminen, H.J., Lauritsalo, S., Kiviranta, I., Saamanen, A.M., Paukkonen, K., and Tammi, M. (1985). Influences of joint immobilization and running exercise on articular cartilage surfaces of young rabbits. A semiquantitative stereomicroscopic and scanning electron microscopic study. Acta Anat (Basel) 122, 62-68.
Karlsson, C., Thornemo, M., Henriksson, H.B., and Lindahl, A. (2009). Identification of a stem cell niche in the zone of Ranvier within the knee joint. J Anat 215, 355-363.
Kersting, U.G., Stubendorff, J.J., Schmidt, M.C., and Bruggemann, G.P. (2005). Changes in knee cartilage volume and serum COMP concentration after running exercise. Osteoarthritis Cartilage 13, 925-934.
Kiviranta, I., Tammi, M., Jurvelin, J., Saamanen, A.M., and Helminen, H.J. (1988). Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J Orthop Res 6, 188-195.
Kizil, C., Kaslin, J., Kroehne, V., and Brand, M. (2012). Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 72, 429-461.
Knopf, F., Hammond, C., Chekuru, A., Kurth, T., Hans, S., Weber, C.W., Mahatma, G., Fisher, S., Brand, M., Schulte-Merker, S., et al. (2011). Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20, 713-724.
Kujala, U.M., Kaprio, J., and Sarna, S. (1994). Osteoarthritis of weight bearing joints of lower limbs in former elite male athletes. BMJ 308, 231-234.
Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., and Kyurkchiev, S. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6, 552-570.
Langenskiold, A., Michelsson, J.E., and Videman, T. (1979). Osteoarthritis of the knee in the rabbit produced by immobilization. Attempts to achieve a reproducible model for studies on pathogenesis and therapy. Acta Orthop Scand 50, 1-14.
Lee, J.Y., Harvey, W.F., Price, L.L., Paulus, J.K., Dawson-Hughes, B., and McAlindon, T.E. (2013). Relationship of bone mineral density to progression of knee osteoarthritis. Arthritis Rheum 65, 1541-1546.
Lequesne, M.G., Dang, N., and Lane, N.E. (1997). Sport practice and osteoarthritis of the limbs. Osteoarthritis Cartilage 5, 75-86.
Li, L., Newton, P.T., Bouderlique, T., Sejnohova, M., Zikmund, T., Kozhemyakina, E., Xie, M., Krivanek, J., Kaiser, J., Qian, H., et al. (2017). Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J 31, 1067-1084.
Liu, M.J., and Wang, Z.J. (2013). [Adaptive changes of Zebrafish (Danio rerio) to anaerobic exercise training]. Dongwuxue Yanjiu 34, 190-195.
Lotz, M., and Loeser, R.F. (2012). Effects of aging on articular cartilage homeostasis. Bone 51, 241-248.
Lu, L., and Wang, Y. (2014). Effects of exercises on knee cartilage volume in young healthy adults: a randomized controlled trial. Chin Med J (Engl) 127, 2316-2321.
Magkos, F., Kavouras, S.A., Yannakoulia, M., Karipidou, M., Sidossi, S., and Sidossis, L.S. (2007). The bone response to non-weight-bearing exercise is sport-, site-, and sex-specific. Clin J Sport Med 17, 123-128.
Maimoun, L., Coste, O., Mura, T., Philibert, P., Galtier, F., Mariano-Goulart, D., Paris, F., and Sultan, C. (2013). Specific bone mass acquisition in elite female athletes. J Clin Endocrinol Metab 98, 2844-2853.
Major, R.J., and Poss, K.D. (2007). Zebrafish Heart Regeneration as a Model for Cardiac Tissue Repair. Drug Discov Today Dis Models 4, 219-225.
Maneix, L., Beauchef, G., Servent, A., Wegrowski, Y., Maquart, F.X., Boujrad, N., Flouriot, G., Pujol, J.P., Boumediene, K., Galera, P., et al. (2008). 17Beta-oestradiol up-regulates the expression of a functional UDP-glucose dehydrogenase in articular chondrocytes: comparison with effects of cytokines and growth factors. Rheumatology (Oxford) 47, 281-288.
Mankin, H.J., and Lippiello, L. (1969). The turnover of adult rabbit articular cartilage. J Bone Joint Surg Am 51, 1591-1600.
Mascre, G., Dekoninck, S., Drogat, B., Youssef, K.K., Brohee, S., Sotiropoulou, P.A., Simons, B.D., and Blanpain, C. (2012). Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257-262.
McClelland, G.B., Craig, P.M., Dhekney, K., and Dipardo, S. (2006). Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J Physiol 577, 739-751.
Meachim, G., and Collins, D.H. (1962). Cell counts of normal and osteoarthritic articular cartilage in relation to the uptake of sulphate (35SO4) in vitro. Ann Rheum Dis 21, 45-50.
Mitchell, R.E., Huitema, L.F., Skinner, R.E., Brunt, L.H., Severn, C., Schulte-Merker, S., and Hammond, C.L. (2013). New tools for studying osteoarthritis genetics in zebrafish. Osteoarthritis Cartilage 21, 269-278.
Morisset, S., Patry, C., Lora, M., and de Brum-Fernandes, A.J. (1998). Regulation of cyclooxygenase-2 expression in bovine chondrocytes in culture by interleukin 1alpha, tumor necrosis factor-alpha, glucocorticoids, and 17beta-estradiol. J Rheumatol 25, 1146-1153.
Muinos-Lopez, E., Rendal-Vazquez, M.E., Hermida-Gomez, T., Fuentes-Boquete, I., Diaz-Prado, S., and Blanco, F.J. (2012). Cryopreservation effect on proliferative and chondrogenic potential of human chondrocytes isolated from superficial and deep cartilage. Open Orthop J 6, 150-159.
Noden, D.M. (1983). The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96, 144-165.
Ohlsson, C., Nilsson, A., Isaksson, O., and Lindahl, A. (1992). Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate. Proc Natl Acad Sci U S A 89, 9826-9830.
Parichy, D.M., Elizondo, M.R., Mills, M.G., Gordon, T.N., and Engeszer, R.E. (2009). Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn 238, 2975-3015.
Park, H., Temenoff, J.S., Holland, T.A., Tabata, Y., and Mikos, A.G. (2005). Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26, 7095-7103.
Paukkonen, K., Selkainaho, K., Jurvelin, J., Kiviranta, I., and Helminen, H.J. (1985). Cells and nuclei of articular cartilage chondrocytes in young rabbits enlarged after non-strenuous physical exercise. J Anat 142, 13-20.
Pelttari, K., Winter, A., Steck, E., Goetzke, K., Hennig, T., Ochs, B.G., Aigner, T., and Richter, W. (2006). Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54, 3254-3266.
Pritzker, K.P., Gay, S., Jimenez, S.A., Ostergaard, K., Pelletier, J.P., Revell, P.A., Salter, D., and van den Berg, W.B. (2006). Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14, 13-29.
Ramshaw, J.A., Shah, N.K., and Brodsky, B. (1998). Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J Struct Biol 122, 86-91.
Reimer, M.M., Sorensen, I., Kuscha, V., Frank, R.E., Liu, C., Becker, C.G., and Becker, T. (2008). Motor neuron regeneration in adult zebrafish. J Neurosci 28, 8510-8516.
Rowlerson, A., Radaelli, G., Mascarello, F., and Veggetti, A. (1997). Regeneration of skeletal muscle in two teleost fish: Sparus aurata and Brachydanio rerio. Cell Tissue Res 289, 311-322.
Saamamen, A.M., Kiviranta, I., Jurvelin, J., Helminen, H.J., and Tammi, M. (1994). Proteoglycan and collagen alterations in canine knee articular cartilage following 20 km daily running exercise for 15 weeks. Connect Tissue Res 30, 191-201.
Saamanen, A.M., Tammi, M., Jurvelin, J., Kiviranta, I., and Helminen, H.J. (1990). Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) joint. J Orthop Res 8, 863-873.
Schmid, T.M., and Linsenmayer, T.F. (1985). Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 100, 598-605.
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675.
Schumacher, B.L., Block, J.A., Schmid, T.M., Aydelotte, M.B., and Kuettner, K.E. (1994). A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311, 144-152.
Sekiya, I., Larson, B.L., Vuoristo, J.T., Reger, R.L., and Prockop, D.J. (2005). Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 320, 269-276.
Shimegi, S., Yanagita, M., Okano, H., Yamada, M., Fukui, H., Fukumura, Y., Ibuki, Y., and Kojima, I. (1994). Physical exercise increases bone mineral density in postmenopausal women. Endocr J 41, 49-56.
Siccardi, A.J., 3rd, Padgett-Vasquez, S., Garris, H.W., Nagy, T.R., D'Abramo, L.R., and Watts, S.A. (2010). Dietary strontium increases bone mineral density in intact zebrafish (Danio rerio): a potential model system for bone research. Zebrafish 7, 267-273.
Stewart, A.A., Byron, C.R., Pondenis, H., and Stewart, M.C. (2007). Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis. Am J Vet Res 68, 941-945.
Stockwell, R.A. (1967). The cell density of human articular and costal cartilage. J Anat 101, 753-763.
Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. (1981). Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293-296.
Taniguchi, N., Carames, B., Ronfani, L., Ulmer, U., Komiya, S., Bianchi, M.E., and Lotz, M. (2009). Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc Natl Acad Sci U S A 106, 1181-1186.
Tveit, M., Rosengren, B.E., Nilsson, J.A., and Karlsson, M.K. (2012). Former male elite athletes have a higher prevalence of osteoarthritis and arthroplasty in the hip and knee than expected. Am J Sports Med 40, 527-533.
van der Rest, M., and Mayne, R. (1988). Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem 263, 1615-1618.
Videman, T., Eronen, I., and Friman, C. (1981). Glycosaminoglycan metabolism in experimental osteoarthritis caused by immobilization. The effects of different periods of immobilization and follow-up. Acta Orthop Scand 52, 11-21.
Vignon, E., Arlot, M., Patricot, L.M., and Vignon, G. (1976). The cell density of human femoral head cartilage. Clin Orthop Relat Res, 303-308.
Vijayakumar, P., Laize, V., Cardeira, J., Trindade, M., and Cancela, M.L. (2013). Development of an in vitro cell system from zebrafish suitable to study bone cell differentiation and extracellular matrix mineralization. Zebrafish 10, 500-509.
Vondermark, K., Gauss, V., Vondermark, H., and Muller, P. (1977). Relationship between Cell-Shape and Type of Collagen Synthesized as Chondrocytes Lose Their Cartilage Phenotype in Culture. Nature 267, 531-532.
Warming, L., Hassager, C., and Christiansen, C. (2002). Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13, 105-112.
Weizmann, S., Tong, A., Reich, A., Genina, O., Yayon, A., and Monsonego-Ornan, E. (2005). FGF upregulates osteopontin in epiphyseal growth plate chondrocytes: implications for endochondral ossification. Matrix Biol 24, 520-529.
Wiweger, M.I., Avramut, C.M., de Andrea, C.E., Prins, F.A., Koster, A.J., Ravelli, R.B., and Hogendoorn, P.C. (2011). Cartilage ultrastructure in proteoglycan-deficient zebrafish mutants brings to light new candidate genes for human skeletal disorders. J Pathol 223, 531-542.
Young, H.E., Steele, T.A., Bray, R.A., Hudson, J., Floyd, J.A., Hawkins, K., Thomas, K., Austin, T., Edwards, C., Cuzzourt, J., et al. (2001). Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264, 51-62.
Zhong, M., Carney, D.H., Boyan, B.D., and Schwartz, Z. (2011). 17beta-Estradiol regulates rat growth plate chondrocyte apoptosis through a mitochondrial pathway not involving nitric oxide or MAPKs. Endocrinology 152, 82-92.
Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279-4295.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67390-
dc.description.abstract退化性骨關節炎為一種關節軟骨退化性疾病,特別在老年人身上發生。雖然目 前對於運動與否造成關節軟骨之利與弊仍沒有足夠之證據,卻仍然相信運動所造 成的物理性壓力與年齡的增長是導致關節退化的主要原因。而究竟關節軟骨是如 何走向退化之機制卻不得而知。近期的研究顯示,斑馬魚隨著年齡增長會出現類 似退化性骨關節炎的現象;而給予年幼斑馬魚運動刺激,亦能促使關節軟骨的發 育。因此,為了了解年齡以及運動這兩項因素是如何影響關節軟骨之生理持恆, 本試驗以四月齡及十二月齡之成年斑馬魚作為觀察不同年齡在軟骨持恆之影響; 同時也設計一套斑馬魚的劇烈運動裝置,令十二月齡之斑馬魚接受劇烈運動訓 練,並觀察軟骨組織之變化。在體型測量與電腦斷層掃描之結果中,我們發現斑 馬魚儘管在性成熟後其體成熟卻尚未達到完全,隨著年齡增長,其體型大小與骨 質密度仍持續上升;而相反的,劇烈的運動訓練卻會造成斑馬魚體長與體重之下 降,並抑制原本穩定成長的骨質密度。在量化軟骨組織胞外基質之染色中,第二 型膠原蛋白隨著年齡增長與運動訓練皆有顯著上升之趨勢;但整體醣胺聚醣之表 現僅隨著軟骨組織發育而擴張它的分佈範圍。有趣的是,我們發現十二月齡之斑 馬魚比起四月齡之組別,其軟骨組織內之細胞數量明顯下降,但在運動試驗組之 間並沒有差異。而進一步在細胞凋亡之試驗中,我們觀察到十二月齡之斑馬魚在 軟骨組織內之凋亡比率亦確實較高,說明年齡增長而引發的軟骨退化很有可能是 軟骨細胞持續凋亡所導致。最後,利用溴化去氧尿苷標記細胞增殖效率,我們發 現四月齡之成年斑馬魚其軟骨細胞之新生成作用較為旺盛,且組織內具有軟骨胚 細胞 (chondroblast) 之存在,以維持軟骨組織之替換更新。但相對的,在十二月齡 之組別則幾乎觀察不到具有增殖能力的軟骨細胞。綜合上述之結果,本試驗認為 年齡之增長確實是影響關節軟骨持恆作用之主要因素,它能藉由降低組織內細胞 更新之來源而導致。此外,我們亦證實斑馬魚適合作為研究關節軟骨在年齡增長 過程逐漸退化之動物模式,在未來可繼續探討其可能的機制發生。zh_TW
dc.description.abstractOsteoarthritis is the degeneration of joint, especially the hyaline cartilage. Both age and exercise are considered critical risk factors for osteoarthritis, although the evidence on whether the exercise beneficial or a risk for osteoarthritis remains controversial. Recent studies suggested that aging-related degeneration of the spinal cartilage in zebrafish resembles the progress of osteoarthritis, while the development of cartilaginous tissue in zebrafish larvae can be altered by swim training. In this study, the spinal cartilages of 4- and 12-month old zebrafish were compared to study the mechanism of age-induced osteoarthritis. In addition, a swim-tunnel device was designed and created to evaluate the effect of intensive exercise on spinal cartilage in adult zebrafish. According to the body measuring, both age and exercise altered the body length and body weight. In addition, in micro-CT image, spinal bone mineral density of 12-month old zebrafish, which was stronger than 4-month old zebrafish, was affected by exercise training. Moreover, quantitative analysis of immunohistochemistry indicated that cartilaginous contents of the extracellular matrix, type II collagen, was significantly increased in both experimental groups. However, in Safranin O staining, the distribution of glycosaminoglycans was expanded only in age group. Interestingly, histochemistry staining showed that hematoxylin positive nuclear counts were higher in 4-month old zebrafish than in 12-month old. Indeed, terminal deoxynucleotidyl transferase dUTP nick end labeling displayed that the spinal cartilage of 12-month zebrafish has higher percentage of apoptotic cells. Moreover, although bromodeoxyuridine staining indicated that cell proliferation is not affected by excessive exercise, the 4-month old zebrafish has significantly more newly proliferated cells and chondroblast than the ones of 12-month old. Taken together, our results indicated that aging is a critical factor to compromise cartilage homeostasis due to the loss of chondrocyte neogenesis. Furthermore, we demonstrated that zebrafish is an excellent model to study aging process such as the mechanisms for cartilaginous homeostasis and osteoarthritis.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:30:19Z (GMT). No. of bitstreams: 1
ntu-106-R04626003-1.pdf: 26582763 bytes, checksum: e7e8c2eebf19bf7fac1ba9550bfc7d58 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 ix
表目錄 x
Chapter 1 文獻探討 1
1.1 關節軟骨:一位沈默不語的勞動者 1
1.1.1 成骨作用與關節軟骨之形成 1
1.1.2 關節軟骨之結構與功能 2
1.1.3 生理持恆與組織更新作用 5
1.2 退化性骨關節炎:一個不可逆的降解過程 7
1.2.1 退化性骨關節炎之病理現象與當今的醫療方式 7
1.2.2 細胞修復組織工程之研究進展 8
1.3 年齡以及運動改變關節軟骨之生理狀態 9
1.3.1 年齡之增長造成軟骨細胞逐漸凋亡 9
1.3.2 運動之壓力改變關節軟骨之生理持恆 10
1.4 斑馬魚 (Danio rerio):脊椎動物的優良研究模式 11
1.4.1 斑馬魚骨骼系統與軟骨組織之發育 11
1.4.2 年齡增長造成斑馬魚骨骼與軟骨組織退化 12
1.4.3 運動訓練促使幼年斑馬魚之骨骼系統及軟骨組織提早發育 13
Chapter 2 研究動機與目的 14
Chapter 3 材料與方法 15
3.1 動物模式 16
3.2 劇烈運動之裝置與訓練進程 16
3.3 體長與體重之測量 19
3.4 電腦斷層掃描作脊椎骨骨質密度 (bone mineral density) 分析 19
3.5 溴化去氧尿苷 (5-bromo-2'-deoxyuridine, BrdU) 對斑馬魚之處理 20
3.6 脊椎軟骨組織之切片準備 20
3.6.1 石蠟包埋 20
3.6.2 石蠟切片 21
3.7 組織化學染色 (Histochemistry staining) 22
3.7.1 組織脫臘復水 22
3.7.2 蘇木素與伊紅之組織染色 22
3.7.3 番紅、速綠及蘇木素之組織染色 22
3.8 免疫組織螢光染色 (Immunofluorescence staining) 23
3.8.1 第二型與第十型膠原蛋白 23
3.8.2 末端脫氧核苷酸轉移酶脫氧尿苷三磷酸切口末端標記 (Terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL) 24
3.8.3 溴化去氧尿苷 24
3.8.4 HMGB2 25
3.9 溴化去氧尿苷之標記追蹤試驗 (Pulse – chase experiment) 25
3.10 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 26
3.11 類流式固態組織細胞儀 (TissueGnostics TissueFAXS HistoFAXS) 26
3.12 共軛焦顯微鏡之拍攝 26
3.13 統計分析 27
Chapter 4 實驗結果 28
4.1 斑馬魚在性成熟後隨著年齡增長其體型大小仍持續發展,而劇烈的運動訓練卻會造成魚隻體長與體重之下降 28
4.2 斑馬魚之脊椎骨骨質密度在性成熟後仍持續上升,而劇烈運動訓練卻會抑制此一現象 32
4.3 年齡增長與運動訓練較不影響成年斑馬魚脊椎軟骨中醣胺聚醣之變化,卻使得第二型膠原蛋白的表現量增加 35
4.3.1 醣胺聚醣 35
4.3.2 第二型膠原蛋白 42
4.4 斑馬魚隨著年齡增長軟骨細胞命運朝向退化之趨勢發展,而劇烈的運動訓練並未能改變細胞之命運 50
4.4.1 軟骨細胞之數量 50
4.4.2 軟骨細胞之凋亡 50
4.4.3 軟骨細胞之新生成作用 55
4.5 具有靜態增殖特性之潛能性細胞隨著斑馬魚年齡增長而逐漸消失在脊椎軟骨中 59
4.5.1 溴化去氧尿苷標記追蹤之試驗 63
4.5.2 HMGB2 蛋白之標記試驗 67
Chapter 5 討論 69
5.1 成年斑馬魚在性成熟後仍需一段時間來達成體成熟之發展,其體型大小與骨質密度仍持續增長,而劇烈的運動訓練卻會促使斑馬魚之生理狀態趨向分解代謝進行 69
5.1.1 年齡增長之影響 69
5.1.2 劇烈運動之影響 71
5.2 比較斑馬魚與哺乳類動物在關節軟骨結構上之相似性,以說明作為研究模式之可行性 73
5.3 斑馬魚在年齡增長過程中軟骨組織之替換更新機制與哺乳類動物不同,但卻具有相同的命運走向 76
5.4 短期劇烈的運動訓練會提升斑馬魚軟骨組織中第二型膠原蛋白的表現,但究竟運動帶給關節軟骨之利與弊仍不得而知 78
5.5 斑馬魚脊椎軟骨中潛能性幹細胞之存在與組織可能的替換更新機制 79
Chapter 6 結論 83
Chapter 7 口試問題與回答 85
REFERENCE 88
dc.language.isozh-TW
dc.subject關節軟骨退化zh_TW
dc.subject軟骨細胞zh_TW
dc.subject斑馬魚zh_TW
dc.subject年齡與運動zh_TW
dc.subject持恆作用zh_TW
dc.subjectArticular cartilageen
dc.subjectHomeostasisen
dc.subjectChondrocyteen
dc.subjectZebrafishen
dc.subjectAge and exerciseen
dc.title年齡以及運動對於成年斑馬魚軟骨組織持恆作用之影響zh_TW
dc.titleThe Effect of Age and Exercise on Tissue Homeostasis of Cartilage in Adult Zebrafish (Danio rerio)en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee皇甫維君,武敬和,張維正,江運金
dc.subject.keyword關節軟骨退化,軟骨細胞,斑馬魚,年齡與運動,持恆作用,zh_TW
dc.subject.keywordArticular cartilage,Chondrocyte,Zebrafish,Age and exercise,Homeostasis,en
dc.relation.page100
dc.identifier.doi10.6342/NTU201702582
dc.rights.note有償授權
dc.date.accepted2017-08-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
25.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved