請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67344完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐濟泰 | |
| dc.contributor.author | Wei-Chen Chen | en |
| dc.contributor.author | 陳偉禎 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:28:36Z | - |
| dc.date.available | 2019-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-06 | |
| dc.identifier.citation | 方宏在。2002。臺灣皮革工業競爭力之研究。碩士論文。國立中山大學國際高階經營碩士學程專班。高雄市。
李聞欣。2015。皮革環保工程概論。中國輕工業出版社。北京市。 行政院環保署。2015年。農業廢棄物管理策略,第4頁。行政院環保署,臺北市。 行政院農業委員會。2016年。農業統計年報,第25頁。行政院農業委員會,臺北市。 侯俐安。2105。農民燒稻草今年特別多 空汙遍全台。《聯合報》,2015/07/09。 莊義雄。1996。稻田收穫後稻草處理與利用。花蓮區農業專訊第15期:p18−19。 Ahrens, T. and P. Weiland. 2007. Biomethane for future mobility. Landbauforsch. Volk. 57: 71−79. American Public Health Association. 1995. Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA. Amon, T., B. Amon, V. Kryvoruchko, A. Machmüller. K. Hopfner-Sixt, V. Bodiroza, R. Hrbek, J. Friedel, E. Pötsch, H. Wagentristl, M. Schreiner, and W. Zollitsch. 2007. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 98: 3204−3212. Appels, L., J. Baeyens, J. Degrève, and R. Dewil. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energ. Combust. 34: 755−781. Association of Official Agricultural Chemists. 1970. Official Methods of Analysis. 11th ed. Association of Official Agricultural Chemists (AOAC): Washington, DC, USA. Bardiya, N. and A. C. Gaur. 1997. Effects of carbon and nitrogen ratio on rice straw biomethanation. J. Rural Energy 4: 1−16. Bauer, A., C. Leonhartsberger, P. Bösch, B. Amon, A. Friedl, and T. Amon. 2010. Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technol. Envir. 12: 153−161. Bond, T. and M. R. Templeton. 2011. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 15: 347−354. Boone, D. R. and L. Y. Xun. 1987. Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Appl. Environ. Microbiol. 53: 1589−1592. Bouallagui, H., R. Ben Cheikh, L. Marouani, and M. Hamdi. 2003. Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresour. Technol. 86: 85−89. Calli, B., B. Mertoglu, B. Inanc, and O. Yenigun. 2005. Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem. 40: 1285−1292. Charles, W., L. Walker, and R. Cord-Ruwisch. 2009. Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour. Technol. 100: 2329−2335. Chen, Y., J. J. Cheng, and K. S. Creamer. 2008. Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99: 4044−4064. Christy, P. M., L. R. Gopinath, and D. Divya. 2014. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew. Sust. Energ. Rev. 34: 167−173. Colak, S., G. Zengin, H. Özgünay, Ö. Sari, and H. S. L. Yüceer. 2006. A new and environmental friendly method for utilization of leather industry fleshings: Biodiesel. In: IULTCS Euro-congress, Istanbul, Turkey. Dinuccio, E., P. Balsari, F. Gioelli, and S. Menardo. 2010. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour. Technol. 101: 3780−3783. Du, W., X. Han, Z. Li, Y. Li, L. Li, and K. Wang. 2015. Oil sorption behaviors of porous polydimethylsiloxane modified collagen fiber matrix. J. Appl. Polym. Sci. 132: 42727. Fang, H.H.P., D. W. C. Chung. 1999. Anaerobic treatment of proteinaceous wastewater under mesophilic and thermophilic conditions. Water Sci. Technol. 40: 77−84. Gannoun, H., N. Ben Othman, H. Bouallagui, and H. Moktar. 2007. Mesophilic and thermophilic anaerobic co-digestion of olive mill wastewaters and abattoir wastewaters in an upflow anaerobic filter. Ind. Eng. Chem. Res. 46: 6737−6743. Gaudette, H. E., W. R. Flight, L. Toner, and D. W. Folger. 1974. An inexpensive titration method for the determination of organic carbon in recent sediments. J. Sediment. Res. 44: 249−253. Getahun, E. and N. Gabiyye. 2013. Experimental investigation and characterization of biodiesel production from leather industry fleshing wastes. Int. J. Renew. Sustain. Ener. 2: 120−129. González-Fernández, C. and P. A. García-Encina. 2009. Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry. Biomass Bioenergy. 33: 1065−1069. Guendouz, J., P. Buffiere, J. Cacho, M. Carrere, and J. P. Delgenes. 2008. High-solids anaerobic digestion: comparison of three pilot scales. Water Sci. Technol. 58: 1757−1763. Hashimoto, A. G., V. H. Varel, and Y. R. Chen. 1981. Ultimate methane yield from beefcattle manure—effect of temperature, ration constituents, antibiotics and manure age. Agricultural Wastes 3: 241−256. Haroun, A. A. 2010. Preparation and characterization of biodegradable thermoplastic films based on collagen hydrolyzate. J. Appl. Polym. Sci. 115: 3230−3237. Hegde, G., P. Pullammanappallil. 2007. Comparison of thermophilic and mesophilic one-stage, batch, high-solids anaerobic digestion. Environ. Technol. 28: 361−369. Helal, G. A. 2005. Bioconversion of straw into improved fodder: mycoprotein production and cellulolytic acivity of rice straw decomposing fungi. Mycobiology 33: 90−96. Hu, Z. H. and H. Q. Yu. 2005. Application of rumen microorganisms for enhanced anaerobic fermentation of corn stover. Process Biochem. 40: 2371−2377. Hu, Z. H. and H. Q. Yu. 2006. Anaerobic digestion of cattail by rumen cultures. Waste Manage. 26: 1222−1228. Kalra, M. S., and J. S. Panwar. 1986. Anaerobic digestion of rice crop residues. Agric. Wastes 17: 263−269. Kanagaraj, J., K. C.Velappan, N. K. Chandra Babu, and S. Sadulla. 2006. Solid wastes generation in the leather industry and its utilization for cleaner environment—a review. J. Sci. Ind. Res. 65: 541−548. Khalid, A., M. Arshad, M. Anjum, T. Mahmood, and L. Dawson. 2011. The anaerobic digestion of solid organic waste. Waste Manage. 31: 1737−1744. Kim, J., C. Park, T. H. Kim, M. Lee, S. Kim, S. W. Kim, and J. Lee. 2003. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95: 271−275. Kim, M., Y. H. Ahn, and R. E. Speece. 2002. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. 36: 4369−4385. Kim, M., C. Y. Gomec, Y. Ahn, R. E. Speece. 2003. Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environ. Technol. 24: 1183−1190. Kivaisi, A. K., H. J. Gijzen, H. J. M. Op den Camp, and G. D. Vogels. 1992. Conversion of cereal residues into biogas in a rumen-derived process. World J. Microb. Biot. 8: 428−433. Kivaisi, A. K. and M. Mtila. 1998. Production of biogas from water hyacinth (Eichhornia crassipes)(Mart)(Solms) in a two-stage bioreactor. World J. Microb. Biot. 14: 125−131. Kugelman, I. J. and P. L. McCarty. 1964. Cation toxicity and stimulation in anaerobic waste treatment. J. Water Pollut. Control Fed. 37: 97−116. Lehtomaki, A., S. Huttunen, and J. A. Rintala. 2007. Laboratory investigations on codigestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour. Conserv. Recycl. 51: 591−609. Lei, Z., J. Chen, Z. Zhang, and N. Sugiura. 2010. Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresour. Technol. 101: 4343−4348. Lettinga, G., S. Rebac, and G. Zeeman. 2001. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 19: 363−370. Li, Y., S. Y. Park, and J. Zhu. 2011. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sust. Energ. Rev. 15: 821−826. Lim, J. S., Z. A. Manan, S. R. W. Alwi, and H. Hashim. 2012. A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sust. Energ. Rev. 16: 3084−3094. Lin, L., L. Yang, and Y. Li. 2015. Effect of feedstock components on thermophilic solid-state anaerobic digestion of yard trimmings. Energy Fuels. 29: 3699−3706. Madsen, M., J. B. Holm-Nielsen, and K. H. Esbensen. 2011. Monitoring of anaerobic digestion processes: a review perspective. Renew. Sust. Energ. Rev. 15: 3141−3155. Mao, C., Y. Feng, , X. Wang, and G. Ren. 2015. Review on research achievements of biogas from anaerobic digestion. Renew. Sust. Energ. Rev. 45: 540−555. Mata-Alvarez, J. 2002. Biomethanization of the organic fraction of municipal solid wastes. IWA publishing. McCarty, P. L. 1964. Anaerobic waste treatment fundamentals. In: Public Works. 95: 107−112. Møller, H. B., S. G. Sommer, and B. K. Ahring. 2004. Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenerg. 26: 485−495. Mosey, F. E. and X. A. Fernandes. 1989. Patterns of hydrogen in biogas from the anaerobic-digestion of milk-sugars. Water Sci. Technol. 21: 187−196. Mussoline, W., G. Esposito, A. Giordano, and P. Lens. 2013. The anaerobic digestion of rice straw: a review. Crit. Rev. Environ. Sci. Technol. 43: 895−915. Pain, B. F. and R. Q. Hepherd. 1985. Anaerobic digestion of livestock wastes. In: Pain, B.F., Hepherd, R.Q. edit., Anaerobic Digestion of Farm Waste. NIRD Technical Bulletins, Reading, pp. 9−14. Panichnumsin, P., A. Nopharatana, B. Ahring, and P. Chaiprasert. 2010. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenerg. 34: 1117−1124. Parawira, W., M. Murto, J. S. Read, and B. Mattiasson. 2007. A study of two-stage anaerobic digestion of solid potato waste using reactors under mesophilic and thermophilic conditions. Environ. Technol. 28: 1205−1216. Park, C., C. Lee, S. Kim, Y. Chen, and H. A. Chase. 2005. Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. J. Biosci. Bioeng. 100: 164−167. Persson M., O. Jönsson, and A. Wellinger. 2006. Biogas upgrading to vehicle fuel standards and grid injection. Brochure of IEA Task 37 “Energy from Biogas and Landfill Gas” Rajagopal, R., D. I. Massé, and G. Singh, 2013. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 143: 632−641. Ravindran, B. and G. Sekaran. 2010. Bacterial composting of animal fleshing generated from tannery industries. Waste Manage. 30: 2622−2630. Samuel, P. O. 2015. Production of biogas from perennial and biennial crop wastes: peach palm and banana’s wastes as alternative biomass in energy generation and environmental susteinability. Am. J. Environ. Eng. 5: 79−89. Shanmugan, P. and N. J. Horan. 2009. Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour. Technol. 100: 4117−4120. Sengül, F., and O. Gürel. 1993. Pollution profile of leather industries; waste characterization and pretreatment of pollutants. Water Sci. Technol. 28: 87−96. Sun, G., Y. Wu, S. Sha, and K. Liu. 1987. Dry digestion of crop wastes: studies on dry anaerobic digestion with agricultural wastes. Biol. Wastes 20: 291−302. Sundar, V. J., A. Gnanamani, C. Muralidharan, N. K. Chandrababu, and A. B. Mandal. 2011. Recovery and utilization of proteinous wastes of leather making: a review. Rev. Environ. Sci. Bio. 10: 151−163. Symons, G. E. and A. M. Buswell. 1933. The methane fermentation of carbohydrates1, 2. J. Am. Chem. Soc. 55: 2028−2036. Taherzadeh, M. J. and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9: 1621−1651. Tilman, D., J. Hill, and C. Lehman. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314: 1598−1600. Viana, M. B., A. V. Freitas, R. C. Leitão, G. A. S. Pinto, and S. T. Santaella. 2012. Anaerobic digestion of crude glycerol: a review. Environ. Technol. Rev. 1: 81−92. Wang, X., X. Lu, F. Li, and G. Yang. 2014. Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PloS One 9: e97265. Ward, A. J., P. J. Hobbs, P. J. Holliman, and D. L. Jones. 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99: 7928−7940. Weiland, P. 2010. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85: 849−860. Wintana, K. 2014. Preparation of leather fat liquor cum filler from fleshing waste for retanning process in leather manufacture (Doctoral dissertation, AAU). Wood, H. G., and L. G. Ljungdahl. 1991. Autotrophic character of the acetogenic bacteria. In: J. M. Shively and L. L. Barton, edit., Variations in Autotrophic life. Academic Press Ltd., London. p: 201−250. Xing, J., C. Criddle, and R. Hickey. 1997. Effects of a long-term periodic substrate perturbation on an anaerobic community. Water Res. 31: 2195−2204. Yang, L., F. Xu, X. Ge, and Y. Li. 2015. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sust. Energ. Rev. 44: 824−834. Yu, H. Q., H. H. P. Fang. 2002. Acidogenesis of dairy wastewater at various pH levels. Water Sci. Technol. 45: 201−206. Zhang, C., G. Xiao, L. Peng, H. Su, and T. Tan. 2013. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 129: 170−176. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67344 | - |
| dc.description.abstract | 本研究旨在探討不同比例的皮革浸灰削肉廢棄物及稻稈調整碳氮比對於厭氧共消化的產甲烷表現、消化液狀況變化及固體消化率的影響。試驗調整碳氮比10、15、20及25,每組三重複,以批次式中溫、液態及固定起始pH等條件進行厭氧共消化,為期48天,測定產氣表現、消化液成分及固體消化率。研究結果顯示,碳氮比為10的處理組於總甲烷產量、每日平均甲烷產量、固體消化率及甲烷生產效率等指標中表現最佳,然其批次的厭氧消化時間約42天,為處理組中耗時最長者,而消化液總氨氮濃度高;當碳氮比提升時,總甲烷產量、固體消化率及甲烷生產效率則隨之下降,同時批次的厭氧消化時間縮短,消化液總氨氮濃度下降。此結果顯示,添加稻稈使碳氮比高於10,無法提升甲烷生產與皮革浸灰削肉廢棄物之處理效率,未來可尋求比稻稈更合適的高碳原料組合、降低含水量及調整接種比例等方向進行研究。 | zh_TW |
| dc.description.abstract | This study aimed to investigate the effect of different carbon to nitrogen ratios (C/N) on methane yield, changes of liquid phase, and solid digestibility in anaerobic co-digestion of leather limed fleshing mixed with rice straws. Four treatments with C/N of 10, 15, 20 and 25 were operated in liquid-state mesophilic batch experiment in triplicates at the same initial pH value. After 48 days of digestion, results showed that C/N of 10 had the highest total methane yield, daily average methane yield, solid digestion, and methane productivity, whereas its digestion time (42 days) was the longest among treatments and had the highest concentration of total ammonia nitrogen. On the contrary, when increasing C/N, decreased total methane yield, solid digestion, and methane productivity were observed. However, it followed by shorter digestion time and lower production of total ammonia nitrogen. In conclusion, adding rice straws to increase C/N above 10 could not benefit in either methane yield or disposing leather limed fleshing. Future work should focus on searching for other high-degradable carbon source, increasing solid content, and optimizing inoculum to substrate ratio in hope for improving methane yield. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:28:36Z (GMT). No. of bitstreams: 1 ntu-106-R03626008-1.pdf: 1749386 bytes, checksum: 9ee1e6c7719f257014f683ed911b6343 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 謝 誌 I
摘 要 II ABSTRACT III 目 錄 IV 圖 次 VII 表 次 VIII 緒 言 1 壹、文獻回顧 2 一、皮革削肉廢棄物 2 (一)組成份及生成情形 2 (二)處理及再利用方法 4 二、厭氧消化 5 (一)厭氧消化過程 6 (二)沼氣能源的用途及發展 8 (三)影響厭氧消化的條件 9 三、稻稈 15 (一)生成情形及組成份 15 (二)處理及再利用方法 16 (三)稻稈應用於厭氧共消化 17 四、研究動機與目的 17 貳、材料與方法 18 一、試驗設計 18 (一)原料來源及成分分析 18 (二)處理組別及操作條件 18 (三)實驗設置 20 (四)樣品採集 21 二、測定項目與分析方法 24 (一)總固體(Total solid, TS) 24 (二)揮發性固體(Volatile solid, VS) 24 (三)總有機碳(Total organic carbon, TOC) 24 (四)總凱氏氮(Total Kjeldahl nitrogen, TKN) 25 (五)電導度(Electrical conductivity) 25 (六)酸鹼值(pH) 25 (七)離子層析(Ion chromatography, IC) 25 (八)揮發性脂肪酸(Volatile fatty acid, VFA) 26 (九)甲烷濃度(Methane content) 26 (十)總氨氮(Total ammonia nitrogen, TAN) 27 三、統計分析 27 參、結果 28 一、碳氮比對於產氣表現的試驗 28 二、碳氮比對於消化液成分的試驗 33 三、碳氮比對於固形物消化率的試驗 37 肆、討論 40 一、碳氮比對於產氣表現的影響 40 (一)總產氣量 40 (二)甲烷濃度 41 (三)延遲反應 42 (四)平均每日甲烷產量及最佳發酵天數 43 二、碳氮比對於消化液成分的影響 43 (一)酸鹼值變化 43 (二)抑制物評估 44 三、碳氮比對於固形物消化率的影響 45 (一)總固體及揮發性固體消化率 45 (二)甲烷生產效率 46 四、綜合討論 47 (一)推薦碳氮比及厭氧消化天數 47 (二)稻稈搭配適合度 48 (三)未來研究方向 48 伍、結論 49 參考文獻 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 碳氮比 | zh_TW |
| dc.subject | 稻稈 | zh_TW |
| dc.subject | 皮革浸灰削肉廢棄物 | zh_TW |
| dc.subject | 厭氧共消化 | zh_TW |
| dc.subject | anaerobic co-digestion | en |
| dc.subject | carbon to nitrogen ratio (C/N) | en |
| dc.subject | rice straw | en |
| dc.subject | leather limed fleshing | en |
| dc.title | 探討以皮革浸灰削肉廢棄物和稻稈調整碳氮比對厭氧共消化的影響 | zh_TW |
| dc.title | Effects of different carbon to nitrogen ratios on anaerobic co-digestion of leather limed fleshing and rice straws | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蘇忠楨 | |
| dc.contributor.oralexamcommittee | 林榮信 | |
| dc.subject.keyword | 碳氮比,厭氧共消化,皮革浸灰削肉廢棄物,稻稈, | zh_TW |
| dc.subject.keyword | carbon to nitrogen ratio (C/N),anaerobic co-digestion,leather limed fleshing,rice straw, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201702654 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
