請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67341
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 阮雪芬 | |
dc.contributor.author | Yun-Hsien Chung | en |
dc.contributor.author | 鍾昀憲 | zh_TW |
dc.date.accessioned | 2021-06-17T01:28:30Z | - |
dc.date.available | 2022-08-08 | |
dc.date.copyright | 2017-08-08 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-07 | |
dc.identifier.citation | References
Adhikary S & Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol. 6: 635–645. Bogenmann E, Peterson S, Maekawa K & Matsushima H (1998) Regulation of NGF responsiveness in human neuroblastoma. Oncogene. 17: 2367–2376. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 3: 203–216. Cheung NK & Dyer MA (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 13: 397–411. Chou TC (2006) Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol Rev. 58: 621–681. Chou TC (1976) Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J Theor Biol. 59: 253–276. Chou TC (2010) Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res. 70: 440–446. Coleman EA, Coon SK, Kennedy RL, Lockhart KD, Stewart CB, Anaissie EJ & Barlogie B (2008) Effects of Exercise in Combination With Epoetin Alfa During High-Dose Chemotherapy and Autologous Peripheral Blood Stem Cell Transplantation for Multiple Myeloma. Oncol Nurs Forum. 35: E53–E61. Colon NC & Chung DH (2011) Neuroblastoma. Adv Pediatr. 58: 297–311. DiMasi JA, Hansen RW, Grabowski HG & Lasagna L (1991) Cost of innovation in the pharmaceutical industry. J Health Econ. 10: 107–142. Dudley JT, Deshpande T & Butte AJ (2011) Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform. 12: 303–311. Feldman E, Arlin Z, Ahmed T, Mittelman A, Puccio C, Chun H, Cook P & Baskind P (1992) Homoharringtonine is safe and effective for patients with acute myelogenous leukemia. Leukemia. 6: 1185–1188. Friedman GK & Castleberry RP (2007) Changing trends of research and treatment in infant neuroblastoma. Pediatr Blood Cancer. 49: 1060–1065. Guffei A, Lichtensztejn Z, Gonçalves Dos Santos Silva A, Louis SF, Caporali A & Mai S (2007) c-Myc-dependent formation of Robertsonian translocation chromosomes in mouse cells. Neoplasia. 9: 578–588. Gustafson WC & Weiss WA (2010) Myc proteins as therapeutic targets. Oncogene. 29: 1249–1259. Huang M & Weiss WA (2013) Neuroblastoma and MYCN. Cold Spring Harb Perspect. Med. 3: a014415. Jin J, Jiang DZ, Mai WY, Meng HT, Qian WB, Tong HY, Huang J, Mao LP, Tong Y, Wang L, Chen ZM & Xu WL (2006) Homoharringtonine in combination with cytarabine and aclarubicin resulted in high complete remission rate after the first induction therapy in patients with de novo acute myeloid leukemia. Leukemia. 20: 1361–1367. Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol. 5: 226. Kremens B, Wieland R, Reinhard H, Neubert D, Beck JD, Klingebiel T, Bornfeld N & Havers W (2003) High-dose chemotherapy with autologous stem cell rescue in children with retinoblastoma. Bone Marrow Transplant. 31: 281–284. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L & Weiss WA (2016) Neuroblastoma. Nat Rev Dis Prim. 2: 16078. McHugh K (2007) Renal and adrenal tumours in children. Cancer Imaging. 7: 41–51. Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KM, Hogarty M, Hogarty M & COG Neuroblastoma Committee (2013) Children’s Oncology Group’s 2013 blueprint for research: Neuroblastoma. Pediatr Blood Cancer. 60: 985–993. Richmond A & Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech. 1: 78–82. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M & Trent J (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature. 305: 245–248. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY & Hammond D (1985) Association of Multiple Copies of the N- myc Oncogene with Rapid Progression of Neuroblastomas. N Engl J Med. 313: 1111–1116. Simpson JK & Gaze MN (1998) Current Management of Neuroblastoma. Oncologist. 3: 253–262. Tong HX, Zhang JH, Ma L, Lu CW & Zhang JH (2006) Role of caspase-8 and DR5 in TRAIL-induced apoptosis of neuroblastoma cells. Zhongguo Dang Da Er Ke Za Zhi. 8: 327–330. Wang J, Lü S, Yang J, Song X, Chen L, Huang C, Hou J & Zhang W (2009) A homoharringtonine-based induction regimen for the treatment of elderly patients with acute myeloid leukemia: a single center experience from China. J Hematol Oncol. 2: 32. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG & Bishop JM (1997) Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16: 2985–2995. Wenzel A, Schwab M, Brent RM, Nishimura S, Taya Y & Blackwell T (1995) The mycn/max protein complex in neuroblastoma. Short review. Eur J Cancer. 31: 516–519. Westermann F, Muth D, Benner A, Bauer T, Henrich KO, Oberthuer A, Brors B, Beissbarth T, Vandesompele J, Pattyn F, Hero B, König R, Fischer M & Schwab M (2008) Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol. 9: R150. Yang X & Thiele CJ (2003) Targeting the tumor necrosis factor-related apoptosis-inducing ligand path in neuroblastoma. Cancer Lett. 197: 137–143. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67341 | - |
dc.description.abstract | 神經母細胞瘤是交感神經系統中最常見的兒童顱外腫瘤。某些遺傳因子改變顯示了預測的疾病發展情況,對於臨床上高風險的過程,例如,在約20%的神經母細胞瘤中發現的,擴增表現的V-myc禽骨髓細胞病變 (V-myc avian myelocytomatosis)致癌基因的神經母細胞瘤衍生同源物(MYCN)。現在而言,晚期的神經母細胞瘤患者仍然難以治癒,目前的治療方案只能將5年生存率提高到50%。我們藉由基因表現差異的分析,在高風險的神經母細胞瘤中找到幾個與MYCN基因擴增表現有關的基因。另外,我們利用美國國家衛生研究院成立的綜合網絡的細胞表現資料庫 (LINCS)中,大量的小分子干擾物與多個細胞株交互作用的資料,我們推斷出的“擾動影響基因”關係。我們提出了一個治療的策略,針對藥物對於基因表現,通過這個方式搜索,我們可以找到疾病基因表現“相反”效應的藥物和藥物組合。基於這些分析結果,我們找到蛋白質合成抑制劑homoharringtonine和組蛋白脫乙酰酶(HDAC)抑制劑apicidin,我們預測這兩個藥物在單獨或組合治療下,可能會抵制擴增MYCN影響的作用。單一給藥時,我們證實了兩種藥物在奈級 (nano)的莫爾濃度 (nM)下,在MYCN基因擴增的神經母細胞瘤細胞系中有細胞毒性。此外,這些藥物的聯合治療也有顯著的協同作用。為了測試生物體內的治療效果,我們通過皮下注射MYCN擴增的神經母細胞瘤細胞系SK-N-BE(2)C,植入異種移植小鼠模型。跟之前在細胞測試的結果相同的,我們發現單獨使用homoharringtonine或apicidin可明顯降低腫瘤體積,並增加神經母細胞瘤小鼠模型的存活率,並且在聯合藥物治療的小鼠中,也有進一步改善。我們將進行更多的功能性研究,來探討這些藥物的精確抗腫瘤機制和神經母細胞瘤的組合。我們的研究結果證明了,以基因表現差異的治療藥物開發方法,並找到對於高危險性神經母細胞瘤患者,有希望的候選藥物。 | zh_TW |
dc.description.abstract | Neuroblastoma is the most ordinary extracranial childhood tumor of the sympathetic nervous system. Some genetic alterations have been shown to be prognostic of high-risk clinical courses, such as the amplification of V-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN), which was found in approximately 20% of neuroblastomas. The patients with advanced neuroblastoma were still hard to cure, and 5-year survival could only be improved to 50% under the current therapeutic regimen. Here, through a gene expression-based integrative analysis, we uncovered several genes associated with the aggressive biology by MYCN amplification in high-risk neuroblastoma. Additionally, using a myriad of perturbation profiles across multiple cell lines from Library of Integrated Network-based Cellular Signatures (LINCS), we inferred recurrent ‘perturbation−affected gene’ relationships. We proposed an expression-based therapeutic discovery strategy by searching for drugs and drug combinations that can achieve the ‘reversal’ effect given a disease profile. Based on these analytic results, we identified a protein synthesis inhibitor homoharringtonine and a histone deacetylase (HDAC) inhibitor apicidin that, alone or in combination, were predicted to reverse the effect mediated by MYCN amplification. We confirmed the cytotoxicity of the two drugs at nanomolar concentrations in MYCN-amplified neuroblastoma cell lines when given individually. Furthermore, the combination treatment of these drugs was strongly synergistic. To test the therapeutic efficacy in vivo, we used the xenograft mouse model via subcutaneous injection of the MYCN-amplified neuroblastoma cell line SK-N-BE(2)C. Consistently, we found that either homoharringtonine or apicidin alone significantly reduced tumor volume and increased survival in this neuroblastoma mouse model, and such responses were further improved in mice with the combined treatment. We will perform more functional studies to interrogate the exact antineoplastic mechanisms for these drugs and the combination in neuroblastoma. Together, our results demonstrate the efficacy of the expression-based therapeutic discovery and identify promising drug candidates for high-risk neuroblastoma patients. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:28:30Z (GMT). No. of bitstreams: 1 ntu-106-R04b21036-1.pdf: 5959157 bytes, checksum: 1b0a8ffc292cfb109b932f6438b6a89a (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Contents
致謝 I 中文摘要 III Abstract V Contents VII Chapter 1 Introduction 1 1.1 Neuroblastoma 1 1.2 Stages of neuroblastoma 2 1.3 MYCN 2 1.4 The correlation of neuroblastoma and MYCN 3 1.5 Treatment approach for high-risk neuroblastoma. 4 1.6 Drug discovery and drug repositioning 5 1.8 The strategy of combination drugs for treatment 6 1.9 Motivation 7 Chapter 2 Materials and Methods 8 2.1 Experimental design 8 2.2 Recurrent perturbation-gene relationships for combinatiorial therapeutic discovery 8 2.3 Data source for genomic analyses in high-risk neuroblastoma 11 2.4 Cell culture 12 2.5 Drug treatment 13 2.6 Cell viability assay using MTS assay 13 2.7 Colony formation 14 2.8 Animal model efficacy studies 15 2.9 Real-time PCR 16 2.10 CompuSyn 17 Chapter 3 Results 18 3.1 Drug repurposing using recurrent perturbation-gene relationships 18 3.2 The cytotoxicity of drugs for neuroblastoma cell lines 19 3.3 The appropriate proportion of dual drugs for combination treatment 20 3.4 Validation of drug−gene recurrences in neuroblastoma 20 3.5 Drugs reduces proliferation of neuroblastoma cell lines 21 3.6 Anti-cancer effects of homoharringtonine and apicidin on neuroblastoma xenograft mice 22 Chapter 4 Discussion 24 Chapter 5 Conclusions 28 Chapter 6 References 29 Figures 35 Figure 1. Experimental design 35 Figure 2. Discovery of expression-based therapeutics 36 Figure 3. Discovery of expression-based therapeutics of combinatorial therapeutics 38 Figure 4. The structure and molecular formula of drugs 39 Figure 5. Validation of drug−gene recurrences in neuroblastoma. 41 Figure 6. The drugs exerts dose-dependnent cytotoxic effect on SK-N-BE(2)C. 60 Figure 7. Histological analysis of mice liver in the xenograft mouse model. 60 Figure 8. In vivo experimental design. 44 Figure 9. In vivo experimental design of each treatment groups 45 Figure 10. In vitro efficacy with homoharringtonine and apicidin in neuroblastoma cells. 46 Figure 11. In vitro efficacy with anisomycin and apicidin in neuroblastoma cells. 47 Figure 12. In vitro efficacy with NVP-BEZ235 and apicidin in neuroblastoma cells 48 Figure 13. Combination index cytotoxic assay and cell viability. 49 Figure 14. Homoharringtonine and apicidin reduce colony formation in neuroblastoma cells. 50 Figure 15. Drug−target docking simulation 51 Figure 16. In vivo efficacy in the neuroblastoma xenograft model 52 Figure 17. Short-term and long-term tumors volume index 53 Figure 18. Short-term mice body weight in xenograft model. 54 Figure 19. Short-term relative weight of major organs. 55 Figure 20. Long-term mice body weight in xenograft model 56 Figure 21. Survival curve of the long-term effects. 57 Figure 22. Histological analysis of tumors tissue in the xenograft mouse model. 58 Figure 23. Histological analysis of mice kidney in the xenograft mouse model. 59 Figure 24. Histological analysis of mice liver in the xenograft mouse model. 60 Tables 62 Table 1. List of top 100 expression-based drug of one-way d24 therapeutics targeting Mycn tag gene signature (FC ≥ 2 constraint) 62 Table 2. List of top 100 expression-based drug of two-way d24 combinatorial therapeutics targeting Mycn tag gene signature (FC ≥ 2 constraint) 70 Table 4. List of Nu/Nu mouse biochemical analysis 84 Appendix 86 | |
dc.language.iso | en | |
dc.title | 研究Homoharringtonine與Apicidin組合於高危險性神經母細胞瘤之治療效果 | zh_TW |
dc.title | Combination Therapy of Homoharringtonine and Apicidin for High-risk Neuroblastoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃宣誠,許文明,黃敏銓,劉彥麟 | |
dc.subject.keyword | 神經母細胞瘤,干擾物質影響基因,同型異黃酮,組蛋白脫乙??(HDAC)抑制劑,細胞增生, | zh_TW |
dc.subject.keyword | Neuroblastoma,MYCN,perturbation?affected gene;homoharringtonine,histone deacetylase (HDAC) inhibitor,cell proliferation, | en |
dc.relation.page | 86 | |
dc.identifier.doi | 10.6342/NTU201702320 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-07 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 5.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。