請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67337完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣(Jiashing Yu) | |
| dc.contributor.author | Chen-Yu Tsai | en |
| dc.contributor.author | 蔡鎮宇 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:28:21Z | - |
| dc.date.available | 2019-09-03 | |
| dc.date.copyright | 2017-09-03 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-06 | |
| dc.identifier.citation | 1. WHO Guiding Principles On Human Organ Transplantation Report of the Regional Meeting; WORLD HEALTH ORGANIZATION REGIONAL OFFICE FOR THE WESTERN PACIFIC Kuala Lumpur, Malaysia, June 8-10, 2009.
2. Berthiaume, F.; Maguire, T. J.; Yarmush, M. L., Tissue engineering and regenerative medicine: history, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering 2011, 2, 403-430. 3. H., H. R.; Jean-Philippe, S.-P.; M., S. M., Tissue Engineering and Regenerative Medicine: A Year in Review. Tissue Engineering Part B: Reviews. 2014, 20 (1), 1-16. 4. Koh, C. J.; Atala, A., Tissue Engineering, Stem Cells, and Cloning: Opportunities for Regenerative Medicine. FRONTIERS IN NEPHROLOGY 2004, 15 (5), 1113-1125. 5. Chan, B. P.; Leong, K. W., Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal 2008, 17 (Suppl 4), 467-479. 6. Giatsidis, G.; Venezia, E. D.; Bassetto, F., The Role of Gene Therapy in Regenerative Surgery: Updated Insights. Plastic and Reconstructive Surgery 2013, 131 (6), 1425–1435. 7. Horch, R. E.; Kopp, J.; Kneser, U.; Beier, J.; Bach, A. D., Tissue engineering of cultured skin substitutes. Journal of Cellular and Molecular Medicine 2005, 9 (3), 592-608. 8. MacNeil, S., Progress and opportunities for tissue-engineered skin. Nature 2007, 445 (7130), 874-880. 9. Olausson, M.; Patil, P. B.; Kuna, V. K.; Chougule, P.; Hernandez, N.; Methe, K.; Kullberg-Lindh, C.; Borg, H.; Ejnell, H.; Sumitran-Holgersson, S., Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. The Lancet 2012, 380 (9838), 230-237. 10. Patricia, M.-Z.; Molly, S. S., Anisotropic three-dimensional peptide channels guide neurite outgrowth within a biodegradable hydrogel matrix. Biomedical Materials 2006, 1 (3), 162. 11. Koh, H. S.; Yong, T.; Chan, C. K.; Ramakrishna, S., Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 2008, 29 (26), 3574-3582. 12. Rossi, C. A.; Pozzobon, M.; De Coppi, P., Advances in musculoskeletal tissue engineering: Moving towards therapy. Organogenesis 2010, 6 (3), 167-172. 13. Sarraf, C. E.; Harris, A. B.; McCulloch, A. D.; Eastwood, M., Tissue engineering of biological cardiovascular system surrogates. Heart, Lung and Circulation 2002, 11 (3), 142-150. 14. Baptista, P. M.; Siddiqui, M. M.; Lozier, G.; Rodriguez, S. R.; Atala, A.; Soker, S., The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011, 53 (2), 604-617. 15. Lee, J. S.; Cho, S.-W., Liver tissue engineering: Recent advances in the development of a bio-artificial liver. Biotechnology and Bioprocess Engineering 2012, 17 (3), 427-438. 16. Schmidt, C. E.; Leach, J. B., Neural Tissue Engineering: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering 2003, 5, 293-347. 17. Haile, Y.; Haastert, K.; Cesnulevicius, K.; Stummeyer, K.; Timmer, M.; Berski, S.; Dräger, G.; Gerardy-Schahn, R.; Grothe, C., Culturing of glial and neuronal cells on polysialic acid. Biomaterials 2007, 28 (6), 1163-1173. 18. Grinsell, D.; Keating, C. P., Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies. BioMed Research International 2014, 2014, 13. 19. Whitworth, I. H.; Brown, R. A.; Doré, C.; Green, C. J.; Terenghi, G., Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. The Journal of Hand Surgery: British & European Volume 1995, 20 (4), 429-436. 20. Dubey, N.; Letourneau, P. C.; Tranquillo, R. T., Guided Neurite Elongation and Schwann Cell Invasion into Magnetically Aligned Collagen in Simulated Peripheral Nerve Regeneration. Experimental Neurology 1999, 158 (2), 338-350. 21. Clinical long-term in vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Journal of Biomaterials Science, Polymer Edition 2000, 11 (8), 869-878. 22. Soldani, G.; Varelli, G.; Minnocci, A.; Dario, P., Manufacturing and microscopical characterisation of polyurethane nerve guidance channel featuring a highly smooth internal surface. Biomaterials 1998, 19 (21), 1919-1924. 23. Amado, S.; Simões, M. J.; Armada da Silva, P. A. S.; Luís, A. L.; Shirosaki, Y.; Lopes, M. A.; Santos, J. D.; Fregnan, F.; Gambarotta, G.; Raimondo, S.; Fornaro, M.; Veloso, A. P.; Varejão, A. S. P.; Maurício, A. C.; Geuna, S., Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials 2008, 29 (33), 4409-4419. 24. Novikova, L. N.; Pettersson, J.; Brohlin, M.; Wiberg, M.; Novikov, L. N., Biodegradable poly-β-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials 2008, 29 (9), 1198-1206. 25. Chew, S. Y.; Mi, R.; Hoke, A.; Leong, K. W., The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 2008, 29 (6), 653-661. 26. Desai, S.; Bidanda, B.; Bártolo, P., Metallic and Ceramic Biomaterials: Current and Future Developments. In Bio-Materials and Prototyping Applications in Medicine, Bártolo, P.; Bidanda, B., Eds. Springer US: Boston, MA, 2008; pp 1-14. 27. Holtorf, H. L.; Jansen, J. A.; Mikos, A. G., Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: Effect of initial cell phenotype. Biomaterials 2005, 26 (31), 6208-6216. 28. Yoo, Y.-R.; Jang, S.-G.; Oh, K.-T.; Kim, J.-G.; Kim, Y.-S., Influences of passivating elements on the corrosion and biocompatibility of super stainless steels. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008, 86B (2), 310-320. 29. Xiong, J. Y.; Li, Y. C.; Wang, X. J.; Hodgson, P. D.; Wen, C. E., Titanium–nickel shape memory alloy foams for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials 2008, 1 (3), 269-273. 30. Lin, D.; Wu, J.; Yan, F.; Deng, S.; Ju, H., Ultrasensitive Immunoassay of Protein Biomarker Based on Electrochemiluminescent Quenching of Quantum Dots by Hemin Bio-Bar-Coded Nanoparticle Tags. Analytical Chemistry 2011, 83 (13), 5214-5221. 31. Aioub, M.; El-Sayed, M. A., A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles. Journal of the American Chemical Society 2016, 138 (4), 1258-1264. 32. Hajiali, H.; Shahgasempour, S.; Naimi-Jamal, M. R.; Peirovi, H., Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. International Journal of Nanomedicine 2011, 6, 2133-2141. 33. Santoro, M.; Shah, S. R.; Walker, J. L.; Mikos, A. G., Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Advanced Drug Delivery Reviews 2016, 107, 206-212. 34. Wang, Y.; Liu, X.-C.; Zhao, J.; Kong, X.-R.; Shi, R.-F.; Zhao, X.-B.; Song, C.-X.; Liu, T.-J.; Lu, F., Degradable PLGA Scaffolds with Basic Fibroblast Growth Factor: Experimental Studies in Myocardial Revascularization. Texas Heart Institute Journal 2009, 36 (2), 89-97. 35. Thevenot, P.; Nair, A.; Shen, J.; Lotfi, P.; Ko, C. Y.; Tang, L., The Effect of Incorporation of SDF-1α into PLGA Scaffolds on Stem Cell Recruitment and the Inflammatory Response. Biomaterials 2010, 31 (14), 3997-4008. 36. Thein-Han, W. W.; Misra, R. D. K., Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomaterialia 2009, 5 (4), 1182-1197. 37. Mohd Hilmi, A. B.; Halim, A. S.; Jaafar, H.; Asiah, A. B.; Hassan, A., Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats. BioMed Research International 2013, 2013, 795458. 38. Choi, B.; Kim, S.; Lin, B.; Wu, B. M.; Lee, M., Cartilaginous Extracellular Matrix-Modified Chitosan Hydrogels for Cartilage Tissue Engineering. ACS Applied Materials & Interfaces 2014, 6 (22), 20110-20121. 39. Zhang, L.; Ao, Q.; Wang, A.; Lu, G.; Kong, L.; Gong, Y.; Zhao, N.; Zhang, X., A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. Journal of Biomedical Materials Research Part A 2006, 77A (2), 277-284. 40. Wang, H.; Zhou, J.; Liu, Z.; Wang, C., Injectable cardiac tissue engineering for the treatment of myocardial infarction. Journal of Cellular and Molecular Medicine 2010, 14 (5), 1044-1055. 41. Laschke, M. W.; Rücker, M.; Jensen, G.; Carvalho, C.; Mülhaupt, R.; Gellrich, N. C.; Menger, M. D., Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds. Journal of Biomedical Materials Research Part A 2008, 85A (2), 397-407. 42. Gelatin handbook. Gelatin Manufactturers Institute of America: America, 2012. 43. Chaplin, M. gelatin. 44. Kang, H.-W.; Tabata, Y.; Ikada, Y., Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 1999, 20 (14), 1339-1344. 45. Xing, Q.; Yates, K.; Vogt, C.; Qian, Z.; Frost, M. C.; Zhao, F., Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal. Scientific Reports 2014, 4, 4706. 46. Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N., Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 2001, 22 (8), 763-768. 47. Jean-Francois Argillier, D. P. Oil Reservoir Treatment Method By Injection of Nanoparticles Containing an Anti-Mineral Deposit Additive. 2008. 48. Rose, J.; Pacelli, S.; Haj, A.; Dua, H.; Hopkinson, A.; White, L.; Rose, F., Gelatin-Based Materials in Ocular Tissue Engineering. Materials 2014, 7 (4), 3106. 49. Mason, B. N.; Califano, J. P.; Reinhart-King, C. A., Matrix Stiffness: A Regulator of Cellular Behavior and Tissue Formation. In Engineering Biomaterials for Regenerative Medicine, 1 ed.; Bhatia, S. K., Ed. Springer-Verlag New York: 2012. 50. Georges, P. C.; Janmey, P. A., Cell type-specific response to growth on soft materials. Journal of Applied Physiology 2005, 98 (4), 1547-1553. 51. McDaniel, D. P.; Shaw, G. A.; Elliott, J. T.; Bhadriraju, K.; Meuse, C.; Chung, K.-H.; Plant, A. L., The Stiffness of Collagen Fibrils Influences Vascular Smooth Muscle Cell Phenotype. Biophysical Journal 2007, 92 (5), 1759-1769. 52. ROBERT J. PELHAM, J.; WANG, Y.-L., Cell locomotion and focal adhesions are regulated by substrate flexibility. Cell Biology 1997, 94, 13661-13665. 53. Engler, A. J.; Griffin, M. A.; Sen, S.; Bönnemann, C. G.; Sweeney, H. L.; Discher, D. E., Myotubes differentiate optimally on substrates with tissue-like stiffness. pathological implications for soft or stiff microenvironments 2004, 166 (6), 877-887. 54. Cox, T. R.; Erler, J. T., Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Disease Models & Mechanisms 2011, 4 (2), 165-178. 55. HARRISON, R. G., ON THE STEREOTROPISM OF EMBRYONIC CELLS. Science 1911, 34 (870), 279-281. 56. Curtis, A.; Wilkinson, C., Nantotechniques and approaches in biotechnology. Trends in Biotechnology 2001, 19 (3), 97-101. 57. Metavarayuth, K.; Sitasuwan, P.; Zhao, X.; Lin, Y.; Wang, Q., Influence of Surface Topographical Cues on the Differentiation of Mesenchymal Stem Cells in Vitro. ACS Biomaterials Science & Engineering 2016, 2 (2), 142-151. 58. Loesberg, W. A.; te Riet, J.; van Delft, F. C. M. J. M.; Schön, P.; Figdor, C. G.; Speller, S.; van Loon, J. J. W. A.; Walboomers, X. F.; Jansen, J. A., The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 2007, 28 (27), 3944-3951. 59. Yang, J.-Y.; Ting, Y.-C.; Lai, J.-Y.; Liu, H.-L.; Fang, H.-W.; Tsai, W.-B., Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. Journal of Biomedical Materials Research Part A 2009, 90A (3), 629-640. 60. Sciancalepore, A. G.; Portone, A.; Moffa, M.; Persano, L.; De Luca, M.; Paiano, A.; Sallustio, F.; Schena, F. P.; Bucci, C.; Pisignano, D., Micropatterning control of tubular commitment in human adult renal stem cells. Biomaterials 2016, 94, 57-69. 61. Andrea Deiwick; Elena Fadeeva; Lothar Koch; Reiner Gebauer; Boris Chichkov; Schlie-Wolter, S., Functional Titanium Lotus-Topography Promotes the Osteoinduction of Human Adipose-Derived Stem Cells In Vitro. Journal of Nanomedicine & Nanotechnology 2014. 62. Mobasseri, A.; Faroni, A.; Minogue, B. M.; Downes, S.; Terenghi, G.; Reid, A. J., Polymer Scaffolds with Preferential Parallel Grooves Enhance Nerve Regeneration. Tissue Engineering. Part A 2015, 21 (5-6), 1152-1162. 63. Kshitiz; Park, J.; Kim, P.; Helen, W.; Engler, A. J.; Levchenko, A.; Kim, D.-H., Control of stem cell fate and function by engineering physical microenvironments. Integrative Biology 2012, 4 (9), 1008-1018. 64. Alenghat, F. J.; Ingber, D. E., Mechanotransduction: All Signals Point to Cytoskeleton, Matrix, and Integrins. Science's STKE 2002, 2002 (119), pe6-pe6. 65. Roca-Cusachs, P.; Iskratsch, T.; Sheetz, M. P., Finding the weakest link – exploring integrin-mediated mechanical molecular pathways. Journal of Cell Science 2012, 125 (13), 3025-3038. 66. Mammoto, A.; Mammoto, T.; Ingber, D. E., Mechanosensitive mechanisms in transcriptional regulation. Journal of Cell Science 2012, 125 (13), 3061-3073. 67. Teo, B. K. K.; Wong, S. T.; Lim, C. K.; Kung, T. Y. S.; Yap, C. H.; Ramagopal, Y.; Romer, L. H.; Yim, E. K. F., Nanotopography Modulates Mechanotransduction of Stem Cells and Induces Differentiation through Focal Adhesion Kinase. ACS Nano 2013, 7 (6), 4785-4798. 68. Sun, Y.; Yong, K. M. A.; Villa-Diaz, L. G.; Zhang, X.; Chen, W.; Philson, R.; Weng, S.; Xu, H.; Krebsbach, P. H.; Fu, J., Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat Mater 2014, 13 (6), 599-604. 69. Yang, K.; Jung, K.; Ko, E.; Kim, J.; Park, K. I.; Kim, J.; Cho, S.-W., Nanotopographical Manipulation of Focal Adhesion Formation for Enhanced Differentiation of Human Neural Stem Cells. ACS Applied Materials & Interfaces 2013, 5 (21), 10529-10540. 70. Choi, J. H.; Bellas, E.; Vunjak-Novakovic, G.; Kaplan, D. L., Adipogenic Differentiation of Human Adipose-Derived Stem Cells on 3D Silk Scaffolds. Methods in molecular biology (Clifton, N.J.) 2011, 702, 319-330. 71. Choi, Y. S.; Dusting, G. J.; Stubbs, S.; Arunothayaraj, S.; Han, X. L.; Collas, P.; Morrison, W. A.; Dilley, R. J., Differentiation of human adipose-derived stem cells into beating cardiomyocytes. Journal of Cellular and Molecular Medicine 2010, 14 (4), 878-889. 72. de Girolamo, L.; Sartori, M. F.; Albisetti, W.; Brini, A. T., Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. Journal of Tissue Engineering and Regenerative Medicine 2007, 1 (2), 154-157. 73. Hamid, A. A.; Idrus, R. B. H.; Saim, A. B.; Sathappan, S.; Chua, K.-H., Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics 2012, 67 (2), 99-106. 74. Jang, S.; Cho, H.-H.; Cho, Y.-B.; Park, J.-S.; Jeong, H.-S., Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biology 2010, 11, 25-25. 75. Park, J.-B., The Effects of Dexamethasone, Ascorbic Acid, and β-Glycerophosphate on Osteoblastic Differentiation by Regulating Estrogen Receptor and Osteopontin Expression. Journal of Surgical Research 2012, 173 (1), 99-104. 76. Klemm, D. J.; Leitner, J. W.; Watson, P.; Nesterova, A.; Reusch, J. E.-B.; Goalstone, M. L.; Draznin, B., Insulin-induced Adipocyte Differentiation: ACTIVATION OF CREB RESCUES ADIPOGENESIS FROM THE ARREST CAUSED BY INHIBITION OF PRENYLATION. Journal of Biological Chemistry 2001, 276 (30), 28430-28435. 77. Sanchez-Ramos, J.; Song, S.; Cardozo-Pelaez, F.; Hazzi, C.; Stedeford, T.; Willing, A.; Freeman, T. B.; Saporta, S.; Janssen, W.; Patel, N.; Cooper, D. R.; Sanberg, P. R., Adult Bone Marrow Stromal Cells Differentiate into Neural Cells in Vitro. Experimental Neurology 2000, 164 (2), 247-256. 78. Woodbury, D.; Schwarz, E. J.; Prockop, D. J.; Black, I. B., Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research 2000, 61 (4), 364-370. 79. Safford, K. M.; Hicok, K. C.; Safford, S. D.; Halvorsen, Y.-D. C.; Wilkison, W. O.; Gimble, J. M.; Rice, H. E., Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications 2002, 294 (2), 371-379. 80. Clyde M. Ofner, I.; Bubnis, W. A., Chemical and Swelling Evaluation of Amino Group Crosslinking in Gelatin and Modified Gelatin Matrices. Pharmaceutical Research 1996, 13 (12). 81. Ahn, H. H.; Lee, I. W.; Lee, H. B.; Kim, M. S., Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces. International Journal of Molecular Sciences 2014, 15 (2), 2075-2086. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67337 | - |
| dc.description.abstract | 胚胎幹細胞會受到微環境中化學及物理變化的影響,而這些變化是由細胞外基質(ECM)和細胞間的交互作用所產生。它能促進幹細胞的生存、增生及分化能力。然而,具有特殊表面結構(如溝槽、脊、坑或柱)的生物材料能夠模仿微環境中的溝脊表面,使幹細胞感受到材料的彈性及表面圖案。因此我們在明膠(gelatin)表面設計了不同尺寸的奈米溝脊圖案。溝脊圖案的設計能夠被系統化,也能反映出細胞外基質的纖維結構。最重要的是,我們可以輕易地觀察到細胞與表面結構的關係。
在先前的研究中,聚苯乙烯(PS)廣泛地被運用於表面結構製造。然而,聚苯乙烯並非生物相容,亦不可降解。為了更好的生物相容性,我們選用明膠作為材料,並利用微鑄造法(micro-molding)在材料表面製造出奈米溝脊圖案。此外,明膠能和許多交聯劑進行交聯,產生更高的機械強度及可彎曲性。 眾所皆知幹細胞可作為移植治療中神經元的來源之一,而神經元的生成和細胞的方向性有所關連。為了瞭解溝脊圖案對幹細胞的影響,我們在明膠表面製造了不同尺寸的奈米溝脊。其中溝和脊的比例為1:1,寬深比分別為400/100、400/400、800/100和800/400奈米。接著在表面上培養人類脂肪幹細胞(hASCs)以觀察其變化。 | zh_TW |
| dc.description.abstract | The growth of stem cells is influenced by both chemical and physical features of the microenvironment, which is also known as “stem cell niche”. These features are dominated by the extra cellular matrix (ECM) and cell-cell interaction. The stem cell niche facilitates the survival, self-renewing and differentiation capabilities of stem cells. Biomaterials with specific structures such as grooves, ridges, pits, or pillars can mimic the topographic landscape of the niche. Cells can “sense” the mechanical properties and surface patterns, ranging from micro- to nano-scale, of the substrate; hence, different sizes of nano-grooves on gelatin surface were designed. The design of grooves or ridges can be systematically modified and those structures can reflect the fibrillar organization of ECM. Most important of all, the orientation of cells along these structures could be observed easily.
In previous studies, polystyrene (PS) was often used because it is easy to fabricate topographic structures. However, PS is not biocompatible and biodegradable. For better biocompatibility, gelatin was chose as the material and fabricated into an ideal nano-grooves films by micro-molding method. On the other hand, gelatin can be crosslinked by using several crosslinking agents, which leads to a higher mechanical strength and better flexibility of the material. It was known that stem cells can be served as a source of neurons in transplantation therapies. The differentiation of neurons is associated with directionality of stem cell. To investigate the effect of topographic cues on stem cells, groove pattern arrays, which ridge to groove ratio is 1:1, with two sizes of widths and depths in nano-scale (W/D: 400/100, 400/400, 800/100 and 800/400 nm), were constructed onto gelatin surfaces. Human adipose-derived stem cells (hASCs) were seeded onto the patterned gelatin and cell proliferation and differentiation were observed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:28:21Z (GMT). No. of bitstreams: 1 ntu-106-R04524043-1.pdf: 4191274 bytes, checksum: a0eb7c161aee62ae33d15e98042f152b (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract iv Content vi List of Figures xi List of Tables xiv Chapter 1 Introduction 1 1.1 Introduction to Tissue Engineering 1 1.1.1 Overview of tissue engineering 1 1.1.2 Neural tissue engineering 3 1.2 Types of Biomaterials 4 1.2.1 Synthetic and natural biomaterials 4 1.2.2 Gelatin 6 1.3 Factors Affecting Cell Behaviors 9 1.3.1 Matrix stiffness 9 1.3.2 Surface topography 11 1.3.3 Cell-substrates interaction 13 1.4 Neural Differentiation of hASCs 16 1.4.1 Human adipose-derived stem cells 16 1.4.2 Neural differentiation inducing factors 17 1.5 Motivation and Aims 17 1.6 Research Framework 18 Chapter 2 Materials and Methods 21 2.1 Chemicals 21 2.1.1 Nano-grooved gelatin films fabrication 21 2.1.2 Cell culture 21 2.1.3 Cell viability/cytotoxicity 22 2.1.4 Immunocytochemistry 23 2.1.5 Crosslinking extent measurement 24 2.1.6 RT-PCR 24 2.2 Instruments 25 2.3 Solution formula 27 2.4 Methods 30 2.4.1 Fabrication of PDMS molds 30 2.4.2 Fabrication of nano-grooved gelatin films 30 2.4.3 Topography measurement 31 2.4.4 Crosslinking extent measurement 31 2.4.5 Mechanical test 32 2.4.6 Swelling test 32 2.4.7 Air bubble contact angle measurement 33 2.4.8 Cell culture, seeding and differentiation 33 2.4.9 Live/Dead assay 34 2.4.10 WST-1 assay 34 2.4.11 Nucleus and F-actin staining 35 2.4.12 Immunocytochemistry 35 2.4.13 Analysis of cell length and alignment 36 2.4.14 RNA extraction 36 2.4.15 Reverse transcription of RNA 37 2.4.16 Real-time polymerase chain reaction (qPCR) 38 2.4.17 Statistical analysis 39 Chapter 3 Results and discussion 40 3.1 Feature Analysis of Nano-grooved Gelatin Films 40 3.1.1 Surface characterization 40 3.1.2 Determination of crosslinking extent 41 3.1.3 Mechanical strength 41 3.1.4 Swelling 42 3.1.5 Air bubble contact angle 42 3.2 hASCs Proliferated on Grooved Gelatin Films 43 3.2.1 Cytotoxicity and cell viability 43 3.2.2 Cell morphology 43 3.2.3 Cell alignment 44 3.2.4 Cell length 44 3.3 hASCs Differentiated on Grooved Gelatin Films 45 3.2.3 Cell morphology 45 3.2.4 Immunocytochemistry analysis 45 3.2.5 Gene expression 46 Conclusion and Future Work 63 Reference 64 Appendix 71 hASCs Proliferated on Grooved Gelatin Films 71 口試問答 72 | |
| dc.language.iso | en | |
| dc.subject | 明膠 | zh_TW |
| dc.subject | 奈米溝槽 | zh_TW |
| dc.subject | 表面地形 | zh_TW |
| dc.subject | 神經分化 | zh_TW |
| dc.subject | 人類脂肪幹細胞 | zh_TW |
| dc.subject | human adipose-derived stem cells | en |
| dc.subject | nano-groove | en |
| dc.subject | topography | en |
| dc.subject | neural differentiation | en |
| dc.subject | gelatin | en |
| dc.title | 具有奈米溝脊地形的明膠薄膜對人類脂肪幹細胞神經分化之影響 | zh_TW |
| dc.title | The Effects of Nano-grooved Gelatin Films on Neural Induction of Human Adipose-derived Stem Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡偉博(Wei-Bor Tsai),陳賢燁(Hsien-Yeh Chen),鄭乃禎(Nai-Chen Cheng) | |
| dc.subject.keyword | 明膠,奈米溝槽,表面地形,神經分化,人類脂肪幹細胞, | zh_TW |
| dc.subject.keyword | gelatin,nano-groove,topography,neural differentiation,human adipose-derived stem cells, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU201702605 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
