Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67333
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明穗(Ming-Sui Lee)
dc.contributor.authorChun-Jung Chienen
dc.contributor.author簡均容zh_TW
dc.date.accessioned2021-06-17T01:28:13Z-
dc.date.available2020-08-10
dc.date.copyright2017-08-10
dc.date.issued2017
dc.date.submitted2017-08-07
dc.identifier.citation[1] P. R. Sanz, B. R. Mezcua and J. M. S. Pena, 'Depth Estimation - An Introduction,' in Current Advancements in Stereo Vision, Rijeka, InTech, July 11, 2012.
[2] B. C. Russell and A. Torralba, 'Building a database of 3d scenes from user annotations,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, 2009.
[3] C. Wu, J.-M. Frahm and M. Pollefeys, 'Repetition-based dense single-view reconstruction,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, 2011.
[4] L. Ladický, J. Shi and M. Pollefeys, 'Pulling Things out of Perspective,' in IEEE Conference on Computer Vision and Pattern Recognition, Washington, 2014.
[5] K. Karsch, C. Liu and S. B. Kang, 'Depth Extraction from Video Using Non-parametric Sampling,' in European Conference on Computer Vision, Florence, Italy, 2012.
[6] F. Liu, C. Shen and G. Lin, 'Deep convolutional neural fields for depth estimation from a single image,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 2015.
[7] X. Chen, Q. Li, D. Zhao and Q. Zhao, 'Occlusion cues for image scene layering,' Journal of Computer Vision and Image Understanding, vol. 117, no. 1, pp. 42-55, 2013.
[8] G. Palou and P. Salembier, 'Monocular Depth Ordering Using T-Junctions and Convexity Occlusion Cues,' IEEE Transactions on Image Processing, vol. 22, no. 5, pp. 1926 - 1939, 2013.
[9] J. Lin, X. Ji, W. Xu and Q. Dai, 'Absolute Depth Estimation From a Single Defocused Image,' IEEE Transactions on Image Processing, vol. 22, no. 11, pp. 4545 - 4550, 2013.
[10] M. Liu, M. Salzmann and X. He, 'Discrete-Continuous Depth Estimation from a Single Image,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 2014.
[11] C. Liu, 'Beyond pixels: Exploring new representations and applications for motion analysis,' Massachusetts Institute of Technology, 2009.
[12] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques and J. Malik, 'Multiscale Combinatorial Grouping,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 2014.
[13] J. Lezama, R. G. v. Gioi, G. Randall and J.-M. Morel, 'Finding Vanishing Points via Point Alignments in Image Primal and Dual Domains,' in IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014.
[14] W. Kim, J. Park and C. Kim, 'A Novel Method for Efficient Indoor---Outdoor Image Classification,' Journal of Signal Processing Systems, vol. 61, no. 3, pp. 251-258, December 2010.
[15] V. Hedau, D. Hoiem and D. Forsyth, 'Recovering the spatial layout of cluttered rooms,' in IEEE International Conference on Computer Vision, Kyoto, 2009.
[16] D. Hoiem, A. A. Efros and M. Hebert, 'Recovering Surface Layout from an Image,' International Journal of Computer Vision, vol. 75, no. 1, pp. 151-172, 2007.
[17] C.-E. Wu, 'Depth Estimation from Multiple Monocular Cues,' 2012.
[18] R. G. v. Gioi, J. Jakubowicz, J.-M. Morel and G. Randall, 'LSD: A Fast Line Segment Detector with a False Detection Control,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 4, pp. 722 - 732, April 2010.
[19] 'IIT Madras Scene Classification Image Database (IITM-SCID),' [Online]. Available: http://www.cse.iitm.ac.in/~vplab/SCID/.
[20] A. Quattoni and A. Torralba, 'Recognizing indoor scenes,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, 2009.
[21] A. Oliva and A. Torralba, 'Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope,' International Journal of Computer Vision, pp. 145-175, 2001.
[22]
P. K. D. H. R. F. Nathan Silberman, 'Indoor Segmentation and Support Inference from RGBD Images,' in European conference on Computer Vision, Florence, 2012.
[23] A. Saxena, S. H. Chung and A. Y. Ng, 'Learning depth from single monocular images,' in International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2005.
[24] A. Saxena, M. Sun and A. Y. Ng, 'Make3D: Learning 3D Scene Structure from a Single Still Image,' IEEE Transactions on Pattern Analysis and Machine Intelligence , vol. 31, no. 5, pp. 824-840, 2009.
[25] Q. Zeng, W. Chen, H. Wang, C. Tu, D. Cohen-Or, D. Lischinski and B. Chen, 'Hallucinating Stereoscopy from a Single Image,' Journal of Computer Graphics Forum, pp. 1-12, May 2015.
[26] Z. Jia, A. Gallagher, Y.-J. Chang and T. Chen, 'A learning-based framework for depth ordering,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2012.
[27] B. Rezaeirowshan, C. Ballester and G. Haro, 'Monocular Depth Ordering using Perceptual Occlusion Cues,' in In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP), Universitat Pompeu Fabra, Spain, 2016.
[28] Y. Mo, T. Liu, X. Zhu, X. Dai and J. Luo, 'Segment Based Depth Extraction Approach for Monocular Image with Linear Perspective,' in Lecture Notes in Computer Science vol 8261, Berlin, Springer, 2013, pp. 168-175.
[29] D. Eigen, C. Puhrsch and R. Fergus, 'Depth Map Prediction from a Single Image using a Multi-Scale Deep Network,' in International Conference on Neural Information Processing Systems, Montreal, 2014.
[30] R. Lindemann, 'DEPTHY,' [Online]. Available: http://depthy.me/#/.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67333-
dc.description.abstract在電腦視覺和計算機圖學的領域裡,深度估計是非常重要的步驟,不僅為許多應用的前處理,也能輔助其他影像和視訊的研究,而人眼雖然能憑一張影像就能判斷物體的遠近關係,但對電腦而言,卻始終是難解的問題。若估計的深度圖直接採用深度攝影機的深度值做學習,會難以反應人眼所感受到的視覺效果,因此當3D電影產業缺少原始的深度資訊時,仍舊會以人工的方式標記出2D影像的深度圖,因此,本篇論文提出了基於影像分割並利用單張影像的深度線索改善深度圖的估計方法。
首先,原始影像會透過場景分析,將影像分割成不同的區塊,再進行絕對距離的估計(消失點偵測),以及影像種類的分類,以利後面的步驟分別對三種影像類型做獨特的線索萃取。第二項的主要步驟是透過影像分割後區塊的T字交界處、共有邊緣以及室內房間的骨架和標記的物體,作不同區塊相對關係的深度線索評量。而最後一步是利用前面所取得的相對深度線索做深度排序,再利用絕對資訊作調整後輸出最後的深度圖。
實驗結果的部分,我們將輸出的深度圖和近年的一些論文做量化和品質化的比較,以本論文的方法所生成的深度圖可以正確且合理的反應人眼視覺上所見到影像裡物體的深度差。為了驗證實用性,我們也利用原圖和深度圖生成三維立體圖片以提供更多元的比較。
zh_TW
dc.description.abstractDepth estimation, also called 3D information reconstruction from a single monocular image is a pivotal problem in computer vision and computer graphics. It also leads to improvements in existing vision tasks, as well as the preprocessing for a variety of real-world applications. However, if the predicted depth is learned by the ground truth gauged by the depth sensor, the depth map does not always correspond to human perception. If the 3D movie industries lack of real depth value of images, they will label the depth map by hand. Consequently, this thesis aims to improve the perceptual depth estimation.

A fully-automatic system of depth estimation based on segments is proposed. First, images are partitioned into several segments. Then the vanishing point detection is applied to extract the global information. After classifying images, there are in total three types of scene in our system: images without absolute information, indoor images with vanishing point and outdoor images with vanishing point. The corresponding perceptual depth cues are measured by unique image types. Second, relative depth estimation is applied to find depth cues (the relationship of segments) through T-junctions, shared boundary, spatial layout and object labeling. Finally, the output depth map is generated based on depth ordering and absolute information from vanishing point.
The experimental results show that the proposed method can estimate depth successfully. Besides, the resultant depth maps are comparable to other work by different quantitative metrics and qualitative results. In order to verify the practicability, the estimated depth maps are utilized to reconstruct 3D images which meet human perception.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:28:13Z (GMT). No. of bitstreams: 1
ntu-106-R04944022-1.pdf: 2917290 bytes, checksum: 12fec95bf9046617e53f1c6ad3d5e9dd (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
口試委員會審定書 II
中文摘要 III
Abstract IV
Contents VI
List of Figures VIII
List of Tables X
Chapter 1 Introduction 1
1.1 Problem Definition 1
1.2 Motivation 1
1.3 Main Contribution 3
1.4 Thesis Organization 4
Chapter 2 Related Work 5
2.1 Depth Estimation from Cues 5
2.2 Learning Based Depth Estimation 10
Chapter 3 Proposed Method 16
3.1 System Overview 16
3.2 Scene Analysis 17
3.2.1 Image Segmentation 17
3.2.2 Absolute Depth Estimation 18
3.2.3 Image Classification 19
3.3 Relative Depth Estimation 20
3.3.1 Spatial Layout Estimation and Object Labeling 20
3.3.2 T-junction Estimation 23
3.3.3 Shared Boundary Estimation 27
3.4 Depth map generation 28
3.4.1 Depth Ordering Based on Relative Cues 28
3.4.2 Absolute Depth Generation 29
Chapter 4 Experimental Results 32
4.1 Experiments on Image Classification Dataset 32
4.2 Experiment on Depth Ordering Dataset 33
4.3 Experiments on Depth Estimation Dataset 35
4.4 More Results 37
Chapter 5 Conclusion 42
5.1 Assumptions and Limitations 42
5.2 Summary 42
Bibliography 44
dc.language.isoen
dc.subject共有邊緣zh_TW
dc.subject深度排列zh_TW
dc.subject影像分割zh_TW
dc.subjectT字交界處zh_TW
dc.subject深度估計zh_TW
dc.subject深度線索zh_TW
dc.subjectT-junctionen
dc.subjectDepth estimationen
dc.subjectDepth orderingen
dc.subjectImage Segmentationen
dc.subjectDepth cuesen
dc.subjectShared boundaryen
dc.title基於影像分割和多重影像線索之深度估計zh_TW
dc.titleSegment-based Depth Estimation of Single Image from Multiple Cuesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周承復(Cheng-Fu Chou),李界羲
dc.subject.keyword深度估計,深度排列,影像分割,T字交界處,共有邊緣,深度線索,zh_TW
dc.subject.keywordDepth estimation,Depth ordering,Image Segmentation,T-junction,Shared boundary,Depth cues,en
dc.relation.page47
dc.identifier.doi10.6342/NTU201702666
dc.rights.note有償授權
dc.date.accepted2017-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved