Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67326
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王珮玲(Pei-Ling Wang)
dc.contributor.authorChun-Hung Luen
dc.contributor.author盧俊宏zh_TW
dc.date.accessioned2021-06-17T01:27:58Z-
dc.date.available2019-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-04
dc.identifier.citationá Norði, K. and Thamdrup, B. (2014) Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim. Cosmochim. Acta 132, 141-150.
Antler, G., Turchyn, A.V., Herut, B., Davies, A., Rennie, V.C. and Sivan, O. (2014) Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments. Estuarine, Coastal and Shelf Science 142, 4-11.
Armstrong, W. (1980) Aeration in higher plants. Advances in botanical research 7, 225-332.
Barnes, R. and Goldberg, E. (1976) Methane production and consumption in anoxic marine sediments. Geology 4, 297-300.
Bartlett, K.B., Bartlett, D.S., Harriss, R.C. and Sebacher, D.I. (1987) Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4, 183-202.
Bartlett, K.B., Harriss, R.C. and Sebacher, D.I. (1985) Methane flux from coastal salt marshes. Journal of Geophysical Research: Atmospheres 90, 5710-5720.
Beal, E.J., House, C.H. and Orphan, V.J. (2009) Manganese-and iron-dependent marine methane oxidation. Science 325, 184-187.
Bendix, M., Tornbjerg, T. and Brix, H. (1994) Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective throughflow. Aquatic Botany 49, 75-89.
Blake, D.R. and Rowland, F.S. (1988) Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science 239, 1129.
Bloom, A.A., Palmer, P.I., Fraser, A., Reay, D.S. and Frankenberg, C. (2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327, 322-325.
Bousquet, P., Ciais, P., Miller, J., Dlugokencky, E., Hauglustaine, D., Prigent, C., Van der Werf, G., Peylin, P., Brunke, E.-G. and Carouge, C. (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443, 439-443.
Bowman, J.P., SLY, L.I., Nichols, P.D. and Hayward, A. (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. International Journal of Systematic and Evolutionary Microbiology 43, 735-753.
Bridgham, S.D., Cadillo‐Quiroz, H., Keller, J.K. and Zhuang, Q. (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19, 1325-1346.
Bubier, J.L. and Moore, T.R. (1994) An ecological perspective on methane emissions from northern wetlands. Trends in ecology & evolution 9, 460-464.
Carini, S., Bano, N., LeCleir, G. and Joye, S.B. (2005) Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environmental microbiology 7, 1127-1138.
Chang, T.-C. and Yang, S.-S. (2003) Methane emission from wetlands in Taiwan. Atmos. Environ. 37, 4551-4558.
Cicerone, R.J. and Oremland, R.S. (1988) Biogeochemical aspects of atmospheric methane. Global biogeochemical cycles 2, 299-327.
Conrad, R. (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports 1, 285-292.
Crawford, J.T., Stanley, E.H., Spawn, S.A., Finlay, J.C., Loken, L.C. and Striegl, R.G. (2014) Ebullitive methane emissions from oxygenated wetland streams. Global change biology 20, 3408-3422.
Crowe, S., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M., Kessler, J., Reeburgh, W. and Roberts, J. (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9, 61-78.
DeLaune, R.D., Smith, C.J. and Patrick, W.H. (1983) Methane release from Gulf coast wetlands. Tellus B 35, 8-15.
Dentener, F., Stevenson, D., Cofala, J., Mechler, R., Amann, M., Bergamaschi, P., Raes, F. and Derwent, R. (2005) The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030. Atmospheric Chemistry and Physics 5, 1731-1755.
Ding, W. and Cai, Z. (2007) Methane emission from natural wetlands in China: summary of years 1995–2004 studies. Pedosphere 17, 475-486.
Ding, W., Cai, Z. and Tsuruta, H. (2004) Methane concentration and emission as affected by methane transport capacity of plants in freshwater marsh. Water, Air, & Soil Pollution 158, 99-111.
Ding, W., Cai, Z., Tsuruta, H. and Li, X. (2002) Effect of standing water depth on methane emissions from freshwater marshes in northeast China. Atmos. Environ. 36, 5149-5157.
Dorodnikov, M., Knorr, K.-H., Kuzyakov, Y. and Wilmking, M. (2011) Plant-mediated CH4 transport and contribution of photosynthates to methanogenesis at a boreal mire: a 14C pulse-labeling study. Biogeosciences 8, 2365-2375.
Dunfield, P., Knowles, R., Dumont, R. and Moore, T.R. (1993) Methane production and consumption in temperate and subarctic peat soils - response to temperature and pH. Soil Biol. Biochem. 25, 321-326.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C. and Myhre, G. (2007) Changes in atmospheric constituents and in radiative forcing. Chapter 2, Climate Change 2007. The Physical Science Basis.
Frenzel, P., Thebrath, B. and Conrad, R. (1990) Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). FEMS Microbiology Ecology 6, 149-158.
Garcia, J.L., Patel, B.K.C. and Ollivier, B. (2000) Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6, 205-226.
Hanson, R.S. and Hanson, T.E. (1996) Methanotrophic bacteria. Microbiological reviews 60, 439-471.
Hartmann, D., Klein Tank, A., Rusticucci, M., Alexander, L., Brönnimann, S., Charabi, Y., Dentener, F., Dlugokencky, E., Easterling, D. and Kaplan, A. (2013) Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, TF Stocker et al., Eds. Cambridge University Press.
Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G. and DeLong, E.F. (1999) Methane-consuming archaebacteria in marine sediments. Nature 398, 802-805.
Kankaala, P., Ojala, A. and Kaki, T. (2004) Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry 68, 297-311.
Kelley, C.A., Martens, C.S. and Ussler, W. (1995) Methane dynamics across a tidally flooded riverbank margin. Limnol. Oceanogr. 40, 1112-1129.
King, G.M. and Wiebe, W.J. (1978) Methane release from soils of a Geogia salt marsh. Geochim. Cosmochim. Acta 42, 343-348.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J., Bergamaschi, P., Bergmann, D., Blake, D.R. and Bruhwiler, L. (2013) Three decades of global methane sources and sinks. Nature Geoscience 6, 813-823.
Knittel, K. and Boetius, A. (2009) Anaerobic oxidation of methane: progress with an unknown process. Annual review of microbiology 63, 311-334.
Koch, O., Tscherko, D. and Kandeler, E. (2007) Seasonal and diurnal net methane emissions from organic soils of the Eastern Alps, Austria: Effects of soil temperature, water balance, and plant biomass. Arct. Antarct. Alp. Res. 39, 438-448.
Le Mer, J. and Roger, P. (2001) Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37, 25-50.
Li, X. and Mitsch, W.J. (2016) Methane emissions from created and restored freshwater and brackish marshes in southwest Florida, USA. Ecological Engineering 91, 529-536.
McDonald, I.R., Bodrossy, L., Chen, Y. and Murrell, J.C. (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environmental Microbiology 74, 1305-1315.
Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, Ü., Zhang, L., Anderson, C.J., Jørgensen, S.E. and Brix, H. (2013) Wetlands, carbon, and climate change. Landscape Ecology 28, 583-597.
Moore, T., Roulet, N. and Knowles, R. (1990) Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochemical Cycles 4, 29-46.
Moore, T.R., Heyes, A. and Roulet, N.T. (1994) Methane emissions from wetlands, southern Hudsun-bay lowland. J. Geophys. Res.-Atmos. 99, 1455-1467.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D. and Mendoza, B. (2013) Anthropogenic and natural radiative forcing. Climate change 423.
Nahlik, A.M. and Mitsch, W.J. (2011) Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Global Change Biology 17, 1321-1334.
Nazaries, L., Murrell, J.C., Millard, P., Baggs, L. and Singh, B.K. (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental microbiology 15, 2395-2417.
Poffenbarger, H.J., Needelman, B.A. and Megonigal, J.P. (2011) Salinity Influence on Methane Emissions from Tidal Marshes. Wetlands 31, 831-842.
Purdy, K., Nedwell, D. and Embley, T. (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Applied and Environmental Microbiology 69, 3181-3191.
Purvaja, R. and Ramesh, R. (2001) Natural and anthropogenic methane emission from coastal wetlands of South India. Environmental Management 27, 547-557.
Purvaja, R., Ramesh, R. and Frenzel, P. (2004) Plant‐mediated methane emission from an Indian mangrove. Global Change Biology 10, 1825-1834.
Rask, H., Schoenau, J. and Anderson, D. (2002) Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology and Biochemistry 34, 435-443.
Roslev, P. and King, G.M. (1996) Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology 19, 105-115.
Segers, R. (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23-51.
Sha, C., Mitsch, W.J., Mander, Ü., Lu, J., Batson, J., Zhang, L. and He, W. (2011) Methane emissions from freshwater riverine wetlands. Ecological Engineering 37, 16-24.
Shannon, R.D., White, J.R., Lawson, J.E. and Gilmour, B.S. (1996) Methane efflux from emergent vegetation in peatlands. Journal of Ecology, 239-246.
Strom, L., Tagesson, T., Mastepanov, M. and Christensen, T.R. (2012) Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland. Soil Biol. Biochem. 45, 61-70.
Sun, X., Mu, C. and Song, C. (2011) Seasonal and spatial variations of methane emissions from montane wetlands in Northeast China. Atmos. Environ. 45, 1809-1816.
Thauer, R.K. (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO 2. Current opinion in microbiology 14, 292-299.
Turetsky, M.R., Kotowska, A., Bubier, J., Dise, N.B., Crill, P., Hornibrook, E.R., Minkkinen, K., Moore, T.R., Myers‐Smith, I.H. and Nykänen, H. (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global change biology 20, 2183-2197.
Updegraff, K., Pastor, J., Bridgham, S.D. and Johnston, C.A. (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol. Appl. 5, 151-163.
Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R., Jin, Y.v. and van Leeuwen, T.T. (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics 10, 11707-11735.
Wang, P.L., Chiu, Y.P., Cheng, T.W., Chang, Y.H., Tu, W.X., Lin, L.H. (2014) Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan. Front Microbial, 5, 121.
Wang, Z.-P. and Han, X.-G. (2005) Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes. Atmos. Environ. 39, 6295-6305.
Whiticar, M.J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161, 291-314.
Yagi, K. and Minami, K. (1990) Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610.
Yvon-Durocher, G., Allen, A.P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N. and del Giorgio, P.A. (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488-491.
Zeikus, J. and Winfrey, M. (1976) Temperature limitation of methanogenesis in aquatic sediments. Applied and environmental microbiology 31, 99-107.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67326-
dc.description.abstract天然濕地一直被視為是重要的大氣甲烷來源區,而濕地的甲烷排放是產甲烷菌與消耗甲烷菌分別進行產甲烷作用與消耗甲烷作用相互影響的結果,然而目前對於甲烷排放、微生物作用以及環境因子之間的關聯尚未完全釐清。本研究選擇台灣北部的淡水河河岸濕地作為研究地點,依據不同鹽度設立五個樣點,並於夏天和冬天進行甲烷排放測量,以及採集表層土壤與沉積物岩芯做化學分析。夏天的甲烷排放量約為0.01到103.6 mmol m-2 day-1,而在冬天則是約0.001到1.50 mmol m-2 day-1。在淡水與半淡鹹水環境中可觀測到較高甲烷的排放;而在鹹水環境中則是顯示低甲烷排放。沉積物岩芯的化學剖面隨著採樣位置不同而有變化,在上游淡水環境中有著高甲烷與低硫酸鹽的化學剖面;在下游鹹水環境則是顯示低甲烷與高硫酸鹽的化學剖面,顯示產甲烷作用與硫酸還原作用分別控制兩種環境的化學剖面。而在中游半淡鹹水環境中則顯示甲烷與硫酸鹽隨深度相互變化的化學剖面,顯示產甲烷作用、消耗甲烷作用與硫酸還原作用相互影響的結果。甲烷排放速率與土壤溫度呈現顯著正相關,但表層甲烷濃度與甲烷排放速率沒有明顯關係,土壤有機碳含量也與甲烷排放速率沒有顯著相關性。本研究結果顯示,甲烷排放受到土壤溫度、鹽度(硫酸鹽)與微生物交互作用的影響,而實際排放到大氣層中的甲烷量是受到地底下產甲烷與硫代謝作用的垂直分布與組成所影響。zh_TW
dc.description.abstractNatural wetlands are considered the most abundant source of atmospheric methane. Methane emission in wetlands is the result of methane production and consumption mediated by methanogens and methanotrophs, respectively. However, the interplay among methane flux, microbial activities and environmental variables is still unclear. In this study, methane fluxes were measured at five riverside wetlands with different salinities and sulfate concentrations along the Tamsui River in northern Taiwan in summer and winter. Surface sediments and sediment cores were collected for complimentary geochemical characterization. The methane fluxes ranged from 0.01 to 103.6 mmol m-2 day-1 in summer and from 0.001 to 1.50 mmol m-2 day-1 in winter. Higher methane fluxes were observed at brackish and freshwater sites, whereas lower methane fluxes were detected at saline sites. The sulfate and methane profiles varied considerably upon salinity well. Sulfate depletion was accompanied with limited variations in methane and low methane abundances at the saline site, whereas the high methane and limited sulfate were observed at the upstream freshwater site. Such geochemical patterns suggest the predominance of either sulfate reduction or methane metabolisms at individual sites. In contrast, various co-variation patterns between sulfate and methane at the midstream sites suggest the interplay among sulfate reduction, methanogenesis and methanotrophy. The measured methane fluxes were also positively correlated with sediment temperatures but weakly correlated with the fluxes calculated from the methane profiles and from surface methane. No or poor correlations were found between the methane flux and organic content. Overall, our results suggest that methane flux is controlled by temperature, salinity (or sulfate) and microbial processes. Despite the seasonal temperature variations, the interaction and vertical organization of sulfur and methane metabolisms are vital in influencing the amount of methane exported to the atmosphere.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:27:58Z (GMT). No. of bitstreams: 1
ntu-106-R03241305-1.pdf: 2065065 bytes, checksum: e4772edaa40bc73d87a4693e0e7efa68 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Global atmospheric methane and sources 1
1.2 Methane emission in wetlands 1
1.2.1 Methanogenesis 2
1.2.2 Methanotrophy 3
1.3 Environmental factors influencing methane emissions 5
1.4 Purpose 6
Chapter 2 Material and methods 8
2.1 Sampling sites 8
2.2 Sampling methods 8
2.2.1 Methane flux measurement 8
2.2.2 Sample collection for geochemical analyses 9
2.3 Analytical methods 10
2.3.1 Gas analysis 10
2.3.2 Carbon isotope analysis of CH4 and DIC 11
2.3.3 Dissolved anion analysis 12
2.3.4 Sediment chemistry analysis 12
2.4 Data analysis 13
2.4.1 Category of methane flux measurement 13
2.4.2 Statistical analysis 13
Chapter 3 Results 18
3.1 Methane fluxes 18
3.2 Environmental parameters of sampling sites 18
3.3 CH4 fluxes versus environmental factors 19
3.4 Geochemical profiles of sediment cores 20
3.4.1 Geochemical profiles of SY01 site 20
3.4.2 Geochemical profiles of CY01 site 21
3.4.3 Geochemical profiles of GD01 site 21
3.4.4 Geochemical profiles of BL01 site 22
Chapter 4 Discussion 37
4.1 Spatial and temporal variations of methane emissions 37
4.2 Factors regulating methane emissions 40
4.2.1 Temperature 40
4.2.2 Sulfate concentration 40
4.2.3 Organic matter content 41
4.2.4 Methane concentration 42
4.2.5 Combination of all environmental factors 42
4.3 Control of microbial activity on methane emission 43
4.3.1 Characteristics of microbial activities in cores 43
4.3.2 Relationships between methane emissions and geochemical profiles 45
4.4 Evaluations of methane fluxes measurement methods 46
Chapter 5 Conclusions 48
REFERENCES 49
dc.language.isoen
dc.title台灣北部河岸濕地甲烷通量與環境影響因子研究zh_TW
dc.titleFactors influencing methane emissions from riverine wetlands in northern Taiwanen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林立虹(Li-Hung Ling),林玉詩(Yu-Shih Lin),?大任(Da-Ren Wen)
dc.subject.keyword濕地,甲烷排放,環境影響因子,zh_TW
dc.subject.keywordwetlands,methane emissions,environmental variables,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201702519
dc.rights.note有償授權
dc.date.accepted2017-08-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved