請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67314
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 康敦彥(Dun-Yen Kang) | |
dc.contributor.author | Hsiang Ting | en |
dc.contributor.author | 丁翔 | zh_TW |
dc.date.accessioned | 2021-06-17T01:27:32Z | - |
dc.date.available | 2027-08-07 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-07 | |
dc.identifier.citation | 1. Saha, D.; Deng, S., Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. J. Colloid Interface Sci. 2010, 348 (2), 615-620.
2. Yaghi, O. M.; O'keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714. 3. Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O'keeffe, M.; Yaghi, O. M., Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal− organic carboxylate frameworks. Acc. Chem. Res. 2001, 34 (4), 319-330. 4. Férey, G., Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008, 37 (1), 191-214. 5. Albadarin, A. B.; Mangwandi, C.; Al-Muhtaseb, A. H.; Walker, G. M.; Allen, S. J.; Ahmad, M. N. M., Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Eng. J. 2012, 179, 193-202. 6. Fu, J. W.; Chen, Z. H.; Wang, M. H.; Liu, S. J.; Zhang, J. H.; Zhang, J. N.; Han, R. P.; Xu, Q., Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 2015, 259, 53-61. 7. Li, Y. H.; Du, Q. J.; Liu, T. H.; Peng, X. J.; Wang, J. J.; Sun, J. K.; Wang, Y. H.; Wu, S. L.; Wang, Z. H.; Xia, Y. Z.; Xia, L. H., Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 2013, 91 (2), 361-368. 8. Najafi, M.; Yousefi, Y.; Rafati, A. A., Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep. Purif. Technol. 2012, 85, 193-205. 9. Xiong, S.; Kong, L.; Zhong, Z.; Wang, Y., Dye adsorption on zinc oxide nanoparticulates atomic-layer-deposited on polytetrafluoroethylene membranes. AlChE J. 2016, 62 (11), 3982-3991. 10. Lin, C.-H.; Gung, C.-H.; Wu, J.-Y.; Suen, S.-Y., Cationic dye adsorption using porous composite membrane prepared from plastic and plant wastes. J. Taiwan Inst. Chem. Eng. 2015, 51, 119-126. 11. Wang, Q.; Gao, D.; Gao, C.; Wei, Q.; Cai, Y.; Xu, J.; Liu, X.; Xu, Y., Removal of a Cationic Dye by Adsorption/Photodegradation Using Electrospun PAN/O-MMT Composite Nanofibrous Membranes Coated with TiO2. Int. J. Photoenergy 2012, 2012. 12. Xu, R.; Jia, M.; Li, F.; Wang, H.; Zhang, B.; Qiao, J., Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye. Appl. Phys. A: Mater. Sci. Process. 2012, 106 (3), 747-755. 13. Haider, S.; Binagag, F. F.; Haider, A.; Al-Masry, W. A., Electrospun oxime-grafted-polyacrylonitrile nanofiber membrane and its application to the adsorption of dyes. J. Polym. Res. 2014, 21 (3), 1-13. 14. Li, M.; Wang, H.; Wu, S.; Li, F.; Zhi, P., Adsorption of hazardous dyes indigo carmine and acid red on nanofiber membranes. RSC Adv. 2012, 2 (3), 900-907. 15. Min, M.; Shen, L.; Hong, G.; Zhu, M.; Zhang, Y.; Wang, X.; Chen, Y.; Hsiao, B. S., Micro-nano structure poly(ether sulfones)/poly(ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution. Chem. Eng. J. 2012, 197, 88-100. 16. Sharma, M.; Madras, G.; Bose, S., PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism. Mater. Res. Express 2016, 3 (7). 17. Xiao, N.; Wen, Q.; Liu, Q.; Yang, Q.; Li, Y., Electrospinning preparation of β-cyclodextrin/glutaraldehyde crosslinked PVP nanofibrous membranes to adsorb dye in aqueous solution. Chem. Res. Chin. Univ. 2014, 30 (6), 1057-1062. 18. Xing, T.; Kai, H.; Chen, G., Study of adsorption and desorption performance of acid dyes on anion exchange membrane. Color. Technol. 2012, 128 (4), 295-299. 19. Baheri, B.; Ghahremani, R.; Peydayesh, M.; Shahverdi, M.; Mohammadi, T., Dye removal using 4A-zeolite/polyvinyl alcohol mixed matrix membrane adsorbents: preparation, characterization, adsorption, kinetics, and thermodynamics. Res. Chem. Intermed. 2016, 42 (6), 5309-5328. 20. Ngang, H. P.; Ooi, B. S.; Ahmad, A. L.; Lai, S. O., Preparation of PVDF-TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J. 2012, 197, 359-367. 21. Ma, H.; Hsiao, B. S.; Chu, B., Electrospun Nanofibrous Membrane for Heavy Metal Ion Adsorption. Curr. Org. Chem. 2013, 17 (13), 1361-1370. 22. Tian, Y.; Wu, M.; Liu, R.; Li, Y.; Wang, D.; Tan, J.; Wu, R.; Huang, Y., Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr. Polym. 2011, 83 (2), 743-748. 23. Aluigi, A.; Corbellini, A.; Rombaldoni, F.; Mazzuchetti, G., Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions. Text. Res. J. 2013, 83 (15), 1574-1586. 24. Tan, P.; Sun, J.; Hu, Y. Y.; Fang, Z.; Bi, Q.; Chen, Y. C.; Cheng, J. H., Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater. 2015, 297, 251-260. 25. Wu, C. L.; Wang, H. Y.; Wei, Z.; Li, C.; Luo, Z. D., Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: Preparation, characterization and their adsorption properties towards heavy metal ions. Appl. Surf. Sci. 2015, 346, 207-215. 26. Riyasudheen, N.; Binsy, P.; Aswini, K. K.; Jayadevan, J.; Athiyanathil, S., Bovine Serum Albumin Immobilized-Polyvinyl Alcohol Membranes: A Study Based on Sorption, Dye Release and Protein Adsorption. Polym.-Plast. Technol. Eng. 2012, 51 (13), 1351-1354. 27. Esfahani, H.; Prabhakaran, M. P.; Salahi, E.; Tayebifard, A.; Keyanpour-Rad, M.; Rahimipour, M. R.; Ramakrishna, S., Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: Kinetics and isotherm. J. Colloid Interface Sci. 2015, 443, 143-152. 28. Kosior, A.; Antosova, M.; Faber, R.; Villain, L.; Polakovic, M., Single-component adsorption of proteins on a cellulose membrane with the phenyl ligand for hydrophobic interaction chromatography. J. Membr. Sci. 2013, 442, 216-224. 29. Liu, Y.; Feng, Z.; Shao, Z.; Chen, X., Chitosan-based membrane chromatography for protein adsorption and separation. Mater. Sci. Eng., C 2012, 32 (6), 1669-1673. 30. Neffe, A. T.; von Ruesten-Lange, M.; Braune, S.; Luetzow, K.; Roch, T.; Richau, K.; Jung, F.; Lendlein, A., Poly(ethylene glycol) Grafting to Poly(ether imide) Membranes: Influence on Protein Adsorption and Thrombocyte Adhesion. Macromol. Biosci. 2013, 13 (12), 1720-1729. 31. Urbani, A.; Lupisella, S.; Sirolli, V.; Bucci, S.; Amoroso, L.; Pavone, B.; Pieroni, L.; Sacchetta, P.; Bonomini, M., Proteomic analysis of protein adsorption capacity of different haemodialysis membranes. Mol. BioSyst. 2012, 8 (4), 1029-1039. 32. Urbani, A.; Sirolli, V.; Lupisella, S.; Levi-Mortera, S.; Pavone, B.; Pieroni, L.; Amoroso, L.; Di Vito, R.; Bucci, S.; Bernardini, S.; Sacchetta, P.; Bonomini, M., Proteomic investigations on the effect of different membrane materials on blood protein adsorption during haemodialysis. Blood Transfus. 2012, 10, S101-S112. 33. Wei, Y.; Ma, J.; Wang, C., Preparation of high-capacity strong cation exchange membrane for protein adsorption via surface-initiated atom transfer radical polymerization. J. Membr. Sci. 2013, 427, 197-206. 34. Menkhaus, T. J.; Varadaraju, H.; Zhang, L.; Schneiderman, S.; Bjustrom, S.; Liu, L.; Fong, H., Electrospun nanofiber membranes surface functionalized with 3-dimensional nanolayers as an innovative adsorption medium with ultra-high capacity and throughput. Chem. Commun. 2010, 46 (21), 3720-3722. 35. Sehaqui, H.; Michen, B.; Marty, E.; Schaufelberger, L.; Zimmermann, T., Functional Cellulose Nanofiber Filters with Enhanced Flux for the Removal of Humic Acid by Adsorption. ACS Sustainable Chem. Eng. 2016, 4 (9), 4582-4590. 36. Tijink, M. S. L.; Wester, M.; Sun, J.; Saris, A.; Bolhuis-Versteeg, L. A. M.; Saiful, S.; Joles, J. A.; Borneman, Z.; Wessling, M.; Stamatialis, D. F., A novel approach for blood purification: Mixed-matrix membranes combining diffusion and adsorption in one step. Acta Biomater. 2012, 8 (6), 2279-2287. 37. Tran, A. T. T.; Patterson, D. A.; James, B. J., Investigating the feasibility of using polysulfone-montmorillonite composite membranes for protein adsorption. J. Food Eng. 2012, 112 (1-2), 38-49. 38. Pourahmady, N.; Bak, P. I., CHEMICAL MODIFICATION OF POLY(VINYL CHLORIDE) - IMPROVED THERMAL-STABILITY BY PARTIAL REDUCTION WITH ORGANOBORON REAGENTS. J. Macromol. Sci., Part A: Pure Appl.Chem. 1994, 31 (2), 185-198. 39. Yang, H. Y.; Han, Z. J.; Yu, S. F.; Pey, K. L.; Ostrikov, K.; Karnik, R., Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun. 2013, 4. 40. Bakhtiari, N.; Azizian, S., Adsorption of copper ion from aqueous solution by nanoporous MOF-5: A kinetic and equilibrium study. J. Mol. Liq. 2015, 206, 114-118. 41. Haque, E.; Jun, J. W.; Jhung, S. H., Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 2011, 185 (1), 507-511. 42. Haque, E.; Lee, J. E.; Jang, I. T.; Hwang, Y. K.; Chang, J.-S.; Jegal, J.; Jhung, S. H., Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater. 2010, 181 (1), 535-542. 43. Huo, S. H.; Yan, X. P., Metal–organic framework MIL-100 (Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 2012, 22 (15), 7449-7455. 44. Meng, Q.; Xin, X.; Zhang, L.; Dai, F.; Wang, R.; Sun, D., A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. J. Mater. Chem. A 2015, 3 (47), 24016-24021. 45. Moreira, M. A.; Santos, J. o. C.; Ferreira, A. F.; Loureiro, J. M.; Ragon, F.; Horcajada, P.; Shim, K. E.; Hwang, Y. K.; Lee, U. H.; Chang, J. S., Reverse shape selectivity in the liquid-phase adsorption of xylene isomers in zirconium terephthalate MOF UiO-66. Langmuir 2012, 28 (13), 5715-5723. 46. Wang, L.; Li, Y. A.; Yang, F.; Liu, Q. K.; Ma, J. P.; Dong, Y. B., Cd(II)-MOF: Adsorption, Separation, and Guest-Dependent Luminescence for Monohalobenzenes. Inorg. Chem. 2014, 53 (17), 9087-9094. 47. Yan, A. X.; Yao, S.; Li, Y. G.; Zhang, Z. M.; Lu, Y.; Chen, W. L.; Wang, E. B., Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. Chem. Eur. J. 2014, 20 (23), 6927-6933. 48. Zhang, L.; Jian, Y.; Wang, J.; He, C.; Li, X.; Liu, T.; Duan, C., Post-modification of a MOF through a fluorescent-labeling technology for the selective sensing and adsorption of Ag+ in aqueous solution. Dalton Trans. 2012, 41 (34), 10153-10155. 49. Al-Maythalony, B. A.; Shekhah, O.; Swaidan, R.; Belmabkhout, Y.; Pinnau, I.; Eddaoudi, M., Quest for Anionic MOF Membranes: Continuous sod-ZMOF Membrane with CO2 Adsorption-Driven Selectivity. J. Am. Chem. Soc. 2015, 137 (5), 1754-1757. 50. Erucar, I.; Manz, T. A.; Keskin, S., Effects of electrostatic interactions on gas adsorption and permeability of MOF membranes. Mol. Simul. 2014, 40 (7-9), 557-570. 51. Wahiduzzaman; Khan, M. R.; Harp, S.; Neumann, J.; Sultana, Q. N., Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption. J. Mater. Eng. Perform. 2016, 25 (4), 1276-1283. 52. Lee, W. C.; Chien, H. T.; Lo, Y.; Chiu, H. C.; Wang, T. p.; Kang, D. Y., Synthesis of Zeolitic Imidazolate Framework Core–Shell Nanosheets Using Zinc-Imidazole Pseudopolymorphs. ACS Appl. Mater. Interfaces 2015, 7 (33), 18353-18361. 53. Yang, A. C.; Wang, T. Y.; Dai, C. A.; Kang, D. Y., Incorporation of single-walled aluminosilicate nanotubes for the control of crystal size and porosity of zeolitic imidazolate framework-L. CrystEngComm 2016, 18 (6), 881-887. 54. Chen, R.; Yao, J.; Gu, Q.; Smeets, S.; Baerlocher, C.; Gu, H.; Zhu, D.; Morris, W.; Yaghi, O. M.; Wang, H., A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO 2 adsorption. Chem. Commun. 2013, 49 (82), 9500-9502. 55. Jiang, H.; Xue, S.; Liu, Y.; Chen, R.; Xing, W., Controllable synthesis of Pd@ZIF-L catalysts by an assembly method. RSC Adv. 2016, 6 (26), 21337-21344. 56. Low, Z.-X.; Razmjou, A.; Wang, K.; Gray, S.; Duke, M.; Wang, H., Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. J. Membr. Sci. 2014, 460, 9-17. 57. Liu, G.; Jiang, Z.; Cao, K.; Nair, S.; Cheng, X.; Zhao, J.; Gomaa, H.; Wu, H.; Pan, F., Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J. Membr. Sci. 2017, 523, 185-196. 58. Lo, Y.; Kang, D. Y., Pseudopolymorphic seeding for the rational synthesis of hybrid membranes with a zeolitic imidazolate framework for enhanced molecular separation performance. J. Mater. Chem. A 2016, 4 (11), 4172-4179. 59. Lo, Y.; Lam, C. H.; Chang, C. W.; Yang, A. C.; Kang, D. Y., Polymorphism/pseudopolymorphism of metal–organic frameworks composed of zinc (II) and 2-methylimidazole: synthesis, stability, and application in gas storage. RSC Adv. 2016, 6 (92), 89148-89156. 60. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279. 61. James, S. L., Metal-organic frameworks. Chem. Soc. Rev. 2003, 32 (5), 276-288. 62. Prince, J. A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K. V. K.; Singh, G., Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes A solution to bio-fouling in membrane separation processes. Sci. Rep. 2014, 4. 63. Adatoz, E.; Avci, A. K.; Keskin, S., Opportunities and challenges of MOF-based membranes in gas separations. Sep. Purif. Technol. 2015, 152, 207-237. 64. Wang, H.; Yao, K. X.; Zhang, Z. J.; Jagiello, J.; Gong, Q. H.; Han, Y.; Li, J., The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chem. Sci. 2014, 5 (2), 620-624. 65. Zhao, Z. X.; Ma, X. L.; Kasik, A.; Li, Z.; Lin, Y. S., Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Ind. Eng. Chem. Res. 2013, 52 (3), 1102-1108. 66. Hexane isomer filtration using a MOF. Tribol. Lubr. Technol. 2013, 69 (10), 16-18. 67. Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weselinski, L. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A. H.; Eddaoudi, M., MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O-2, and CO2 Storage. J. Am. Chem. Soc. 2015, 137 (41), 13308-13318. 68. Marco-Lozar, J. P.; Juan-Juan, J.; Suarez-Garcia, F.; Cazorla-Amoros, D.; Linares-Solano, A., MOF-5 and activated carbons as adsorbents for gas storage. Int. J. Hydrogen Energy 2012, 37 (3), 2370-2381. 69. Li, B. Y.; Zhang, Y. M.; Ma, D. X.; Li, L.; Li, G. H.; Li, G. D.; Shi, Z.; Feng, S. H., A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem. Commun. 2012, 48 (49), 6151-6153. 70. Nguyen, L. T. L.; Nguyen, T. T.; Nguyen, K. D.; Phan, N. T. S., Metal-organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Appl. Catal., A 2012, 425, 44-52. 71. Li, Q. L.; Wang, J. P.; Liu, W. C.; Zhuang, X. Y.; Liu, J. Q.; Fan, G. L.; Li, B. H.; Lin, W. N.; Man, J. H., A new (4,8)-connected topological MOF as potential drug delivery. Inorg. Chem. Commun. 2015, 55, 8-10. 72. Torad, N. L.; Li, Y. Q.; Ishihara, S.; Ariga, K.; Kamachi, Y.; Lian, H. Y.; Hamoudi, H.; Sakka, Y.; Chaikittisilp, W.; Wu, K. C. W.; Yamauchi, Y., MOF-derived Nanoporous Carbon as Intracellular Drug Delivery Carriers. Chem. Lett. 2014, 43 (5), 717-719. 73. Singha, D. K.; Mahata, P., Highly Selective and Sensitive Luminescence Turn-On-Based Sensing of Al3+ Ions in Aqueous Medium Using a MOF with Free Functional Sites. Inorg. Chem. 2015, 54 (13), 6373-6379. 74. Yang, G. S.; Li, M. N.; Li, S. L.; Lan, Y. Q.; He, W. W.; Wang, X. L.; Qin, J. S.; Su, Z. M., Controllable synthesis of microporous, nanotubular and mesocage-like metal-organic frameworks by adjusting the reactant ratio and modulated luminescence properties of Alq3@MOF composites. J. Mater. Chem. 2012, 22 (34), 17947-17953. 75. Park, J.; Kim, H.; Jung, Y., Origin of Selective Guest-Induced Magnetism Transition in Fe/MOF-74. Journal of Physical Chemistry Letters 2013, 4 (15), 2530-2534. 76. Saha, R.; Roychowdhury, A.; Steele, I. M.; Biswas, S.; Kumar, S., { Mn-2(L-tartrate)(2)(H2O) center dot 3H(2)O}(n) - A chiral MOF: Adsorption and guest dependent magnetism. J. Indian Chem. Soc. 2013, 90 (8), 1043-1052. 77. Wen, L. L.; Zhou, L.; Zhang, B. G.; Meng, X. G.; Qu, H.; Li, D. F., Multifunctional amino-decorated metal-organic frameworks: nonlinear-optic, ferroelectric, fluorescence sensing and photocatalytic properties. J. Mater. Chem. 2012, 22 (42), 22603-22609. 78. Forster, P.; Thomas, P.; Cheetham, A., Biphasic Solvothermal Synthesis: A New Approach for Hybrid Inorganic− Organic Materials. Chem. Mater. 2002, 14 (1), 17-20. 79. Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X., Ultrasonic synthesis of the microporous metal–organic framework Cu 3 (BTC) 2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater. Lett. 2009, 63 (1), 78-80. 80. Ni, Z.; Masel, R. I., Rapid production of metal− organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128 (38), 12394-12395. 81. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214. 82. Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J., Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 2006, 16 (7), 626-636. 83. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’keeffe, M.; Yaghi, O. M., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res 2010, 43 (1), 58-67. 84. Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J., Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 2010, 354 (1), 48-54. 85. Fairen-Jimenez, D.; Moggach, S.; Wharmby, M.; Wright, P.; Parsons, S.; Duren, T., Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 2011, 133 (23), 8900-8902. 86. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186-10191. 87. Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47 (7), 2071-2073. 88. Jian, M.; Liu, B.; Liu, R.; Qu, J.; Wang, H.; Zhang, X., Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv. 2015, 5 (60), 48433-48441. 89. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun. 2011, 47 (37), 10275-10277. 90. Pan, Y.; Wang, B.; Lai, Z., Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability. J. Membr. Sci. 2012, 421, 292-298. 91. Huang, K.; Dong, Z.; Li, Q.; Jin, W., Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors. Chem. Commun. 2013, 49 (87), 10326-10328. 92. Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M., Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 2014, 209, 172-184. 93. Sokolowska-Gajda, J.; Freeman, H. S.; Reife, A., Synthetic dyes based on environmental considerations. Part 2: Iron complexes formazan dyes. Dyes and pigments 1996, 30 (1), 1-20. 94. Tahiri, S.; Messaoudi, A.; Albizane, A.; Azzi, M.; Bouhria, M.; Younssi, S. A.; Bennazha, J.; Mabrour, J., Removal of dyes from aqueous solutions by adsorption on chrome-tanned solid wastes generated in the leather industry. Water Qual. Res. J. Can. 2003, 38 (2), 393-411. 95. Wang, Y. T.; Wang, S. S.; Lei, J. Q.; Sun, H.; Jin, W. P.; Ye, T.; Li, B.; Wang, L., Removal of reactive dyes by a solid waste product from food processing: crayfish carapace. Desalination and Water Treatment 2014, 52 (28-30), 5541-5552. 96. Levitan, H., FOOD, DRUG, AND COSMETIC DYES - BIOLOGICAL EFFECTS RELATED TO LIPID SOLUBILITY. Proceedings of the National Academy of Sciences of the United States of America 1977, 74 (7), 2914-2918. 97. Petrinic, I.; Andersen, N. P. R.; Sostar-Turk, S.; Le Marechal, A. M., The removal of reactive dye printing compounds using nanofiltration. Dyes and Pigments 2007, 74 (3), 512-518. 98. Field, M. S.; Wilhelm, R. G.; Quinlan, J. F.; Aley, T. J., An assessment of the potential adverse properties of fluorescent tracer dyes used for groundwater tracing. Environ. Monit. Assess. 1995, 38 (1), 75-96. 99. Hsu, T. C.; Chiang, C. S., Activated sludge treatment of dispersed dye factory wastewater. Journal of Environmental Science & Health Part A 1997, 32 (7), 1921-1932. 100. Sen, T. K.; Afroze, S.; Ang, H. M., Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water, Air, Soil Pollut. 2011, 218 (1), 499-515. 101. Yagub, M. T.; Sen, T. K.; Ang, H., Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water, Air, Soil Pollut. 2012, 1-16. 102. Zhang, A. P.; Fang, L.; Wang, J. L.; Liu, W. P., Enzymatic decolorization of Orange II: Optimization by response surface methodology and pathway. Environmental Progress & Sustainable Energy 2013, 32 (2), 294-301. 103. Stock, N. L.; Peller, J.; Vinodgopal, K.; Kamat, P. V., Combinative sonolysis and photocatalysis for textile dye degradation. Environ. Sci. Technol. 2000, 34 (9), 1747-1750. 104. Adeyemo, A. A.; Adeoye, I. O.; Bello, O. S., Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicological & Environmental Chemistry 2012, 94 (10), 1846-1863. 105. Pan, Y.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H.; Lai, Z., Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13 (23), 6937-6940. 106. Deng, S. J.; Xu, H. J.; Jiang, X. S.; Yin, J., Poly(vinyl alcohol) (PVA)-Enhanced Hybrid Hydrogels of Hyperbranched Poly(ether amine) (hPEA) for Selective Adsorption and Separation of Dyes. Macromolecules 2013, 46 (6), 2399-2406. 107. Deng, S. J.; Wang, R.; Xu, H. J.; Jiang, X. S.; Yin, J., Hybrid hydrogels of hyperbranched poly(ether amine)s (hPEAs) for selective adsorption of guest molecules and separation of dyes. J. Mater. Chem. 2012, 22 (19), 10055-10061. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67314 | - |
dc.description.abstract | 這篇論文致力於將金屬有機骨架材料製成薄膜吸附器並應用於水處理,我們選用的金屬有機骨架材料分別是ZIF-8和ZIF-L,將他們分別成膜於α-氧化鋁基材,並嘗試吸附孟加拉玫瑰紅溶液(一種粉紅色染劑)。我們的研究發現,孟加拉玫瑰紅對ZIF-L的外表面有很好的親和性,另外也觀察到結晶顆粒愈小(總表面積越大)吸附效果會越好,而在ZIF-L薄膜合成過程中添加介面活性劑溴化十六烷基三甲銨可以有效地縮小ZIF-L的顆粒大小,並讓α-氧化鋁基材內部填滿更多的ZIF-L顆粒。從實驗結果得知,加入溴化十六烷基三甲銨濃度最高的ZIF-L薄膜擁有最好的吸附效果,另外值得一提的是,ZIF-L薄膜的permeance (10000 L/m2/bar/h) 也遠高於目前文獻提出的薄膜吸附器。 | zh_TW |
dc.description.abstract | We investigate a novel membrane adsorber comprising metal-organic frameworks (MOFs) for water treatment. Two types of MOF (ZIF-8 and ZIF-L) were grown within a porous α-alumina support to form a membrane for the adsorption of the die molecule, Rose Bengal, in aqueous phase. The external surface of the ZIF-L was shown to possess a strong affinity for Rose Bengal. We also observed that small crystals (with large external surface area) are beneficial to adsorption. The surfactant CTAB was used in the synthesis of ZIF-L-based membrane adsorber in order to reduce the size of ZIF-L particles and increase the loading of ZIF-L within the membrane. The membrane adsorber with the highest concentration of CTAB achieved the highest dynamic adsorption capacity. ZIF-L-based membrane adsorbers exhibited water permeance (10000 L/m2/bar/h) far exceeding that of most existing membrane adsorbers. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:27:32Z (GMT). No. of bitstreams: 1 ntu-106-R04524083-1.pdf: 4307265 bytes, checksum: b77f0c7846f3ab43058e734364197ab5 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Contents iv List of Figures vi Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objective 1 Chapter 2 Literature Reviews 6 2.1 Introduction of Metal Organic Frameworks (MOFs) 6 2.1.1 Introduction of Zeolitic Imidazolate Frameworks 8 2.2 Introduction dye adsorption 12 2.2.1 Introduction of dye 12 2.2.2 Dye adsorption 12 Chapter 3 Experimental Section 13 3.1 Chemicals and Materials 13 3.2 Preparation of pure ZIF-8 membrane adsorber and pure ZIF-8 powder 16 3.3 Preparation of pure ZIF-L membrane adsorber and pure ZIF-L powder (without CTAB) 17 3.4 Preparation of pure ZIF-L membrane adsorber and pure ZIF-L powder (with CTAB) 19 3.5 Material characterization 23 3.6 Single-point adsorption of Rose Bengal using powder samples 26 3.7 Adsorption of Rose Bengal using a membrane adsorber 29 Chapter 4 Results and Discussion 31 4.1 Adsorption of Rose Bengal using ZIF-8/ZIF-L powder 31 4.2 Adsorption of Rose Bengal using ZIF-8/ZIF-L membrane adsorber 39 Chapter 5 Conclusions 52 References 53 | |
dc.language.iso | zh-TW | |
dc.title | 以金屬有機骨架薄膜吸附器去除染劑 | zh_TW |
dc.title | Membrane Adsorber Comprising Zeolitic Imidazolate Framework for Removal of Die Molecules | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝之真(Chih-Chen Hsieh),林義?(Yi-Feng Lin) | |
dc.subject.keyword | 金屬有機骨架,類沸石咪唑骨架,薄膜吸附器,水處理, | zh_TW |
dc.subject.keyword | metal-organic framework,zeolitic imidazolate frameworks,membrane adsorber,water treatment, | en |
dc.relation.page | 61 | |
dc.identifier.doi | 10.6342/NTU201702462 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。