請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6727
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡孟君(Meng-Chun Hu) | |
dc.contributor.author | Kai-Hao Liang | en |
dc.contributor.author | 梁凱豪 | zh_TW |
dc.date.accessioned | 2021-05-17T09:16:59Z | - |
dc.date.available | 2018-03-04 | |
dc.date.available | 2021-05-17T09:16:59Z | - |
dc.date.copyright | 2013-03-04 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-10-26 | |
dc.identifier.citation | 參考文獻
Ameyar M, Wisniewska M, Weitzman JB. 2003. A role for AP-1 in apoptosis: the case for and against. Biochimie 85(8):747-752. Baulieu EE. 1998. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23(8):963-987. Ben-Zimra M, Koler M, Melamed-Book N, Arensburg J, Payne AH, Orly J. 2002. Uterine and placental expression of steroidogenic genes during rodent pregnancy. Mol Cell Endocrinol 187(1-2):223-231. Bu Y, Gelman IH. 2007. v-Src-mediated down-regulation of SSeCKS metastasis suppressor gene promoter by the recruitment of HDAC1 into a USF1-Sp1-Sp3 complex. J Biol Chem 282(37):26725-26739. Charalampopoulos I, Remboutsika E, Margioris AN, Gravanis A. 2008. Neurosteroids as modulators of neurogenesis and neuronal survival. Trends Endocrinol Metab 19(8):300-307. Chiang YF, Lin HT, Hu JW, Tai YC, Lin YC, Hu MC. 2010. Differential regulation of the human CYP11A1 promoter in mouse brain and adrenals. J Cell Physiol. Chiang YF, Lin HT, Hu JW, Tai YC, Lin YC, Hu MC. 2011. Differential regulation of the human CYP11A1 promoter in mouse brain and adrenals. J Cell Physiol 226(8):1998-2005. Chou SJ, Lai KN, Chung B. 1996. Characterization of the upstream sequence of the human CYP11A1 gene for cell type-specific expression. J Biol Chem 271(36):22125-22129. Clemens JW, Lala DS, Parker KL, Richards JS. 1994. Steroidogenic factor-1 binding and transcriptional activity of the cholesterol side-chain cleavage promoter in rat granulosa cells. Endocrinology 134(3):1499-1508. Compagnone NA, Bulfone A, Rubenstein JL, Mellon SH. 1995. Expression of the steroidogenic enzyme P450scc in the central and peripheral nervous systems during rodent embryogenesis. Endocrinology 136(6):2689-2696. Compagnone NA, Mellon SH. 1998. Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proc Natl Acad Sci U S A 95(8):4678-4683. Compagnone NA, Mellon SH. 2000. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21(1):1-56. Corre S, Galibert MD. 2005. Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res 18(5):337-348. Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM. 1987. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236(4803):799-806. Dubrovsky B. 2006. Neurosteroids, neuroactive steroids, and symptoms of affective disorders. Pharmacol Biochem Behav 84(4):644-655. Eraly SA, Nelson SB, Huang KM, Mellon PL. 1998. Oct-1 binds promoter elements required for transcription of the GnRH gene. Mol Endocrinol 12(4):469-481. Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling M. 2000. Multiple actions of steroid hormones--a focus on rapid, nongenomic effects. Pharmacol Rev 52(4):513-556. Garcia-Segura LM, Melcangi RC. 2006. Steroids and glial cell function. Glia 54(6):485-498. Gizard F, Lavallee B, DeWitte F, Hum DW. 2001. A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression. J Biol Chem 276(36):33881-33892. Guarneri P, Guarneri R, Cascio C, Pavasant P, Piccoli F, Papadopoulos V. 1994. Neurosteroidogenesis in rat retinas. J Neurochem 63(1):86-96. Guo IC, Hu MC, Chung BC. 2003. Transcriptional regulation of CYP11A1. J Biomed Sci 10(6 Pt 1):593-598. Guo IC, Huang CY, Wang CK, Chung BC. 2007. Activating protein-1 cooperates with steroidogenic factor-1 to regulate 3',5'-cyclic adenosine 5'-monophosphate-dependent human CYP11A1 transcription in vitro and in vivo. Endocrinology 148(4):1804-1812. Guo IC, Tsai HM, Chung BC. 1994. Actions of two different cAMP-responsive sequences and an enhancer of the human CYP11A1 (P450scc) gene in adrenal Y1 and placental JEG-3 cells. J Biol Chem 269(9):6362-6369. Harrison NL, Simmonds MA. 1984. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 323(2):287-292. Hess J, Angel P, Schorpp-Kistner M. 2004. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(Pt 25):5965-5973. Hu MC, Chou SJ, Huang YY, Hsu NC, Li H, Chung BC. 1999. Tissue-specific, hormonal, and developmental regulation of SCC-LacZ expression in transgenic mice leads to adrenocortical zone characterization. Endocrinology 140(12):5609-5618. Hu MC, Hsu NC, Pai CI, Wang CK, Chung B. 2001. Functions of the upstream and proximal steroidogenic factor 1 (SF-1)-binding sites in the CYP11A1 promoter in basal transcription and hormonal response. Mol Endocrinol 15(5):812-818. Hu ZY, Jung-Testas I, Robel P, Baulieu EE. 1989. Neurosteroids: steroidogenesis in primary cultures of rat glial cells after release of aminoglutethimide blockade. Biochem Biophys Res Commun 161(2):917-922. Huang N, Miller WL. 2000. Cloning of factors related to HIV-inducible LBP proteins that regulate steroidogenic factor-1-independent human placental transcription of the cholesterol side-chain cleavage enzyme, P450scc. J Biol Chem 275(4):2852-2858. Hum DW, Staels B, Black SM, Miller WL. 1993. Basal transcriptional activity and cyclic adenosine 3',5'-monophosphate responsiveness of the human cytochrome P450scc promoter transfected into MA-10 Leydig cells. Endocrinology 132(2):546-552. Kay JN, Chu MW, Sanes JR. 2012. MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 483(7390):465-469. Kibaly C, Patte-Mensah C, Mensah-Nyagan AG. 2005. Molecular and neurochemical evidence for the biosynthesis of dehydroepiandrosterone in the adult rat spinal cord. J Neurochem 93(5):1220-1230. Kimoto T, Tsurugizawa T, Ohta Y, Makino J, Tamura H, Hojo Y, Takata N, Kawato S. 2001. Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium-dependent synthesis. Endocrinology 142(8):3578-3589. Koenig HL, Schumacher M, Ferzaz B, Thi AN, Ressouches A, Guennoun R, Jung-Testas I, Robel P, Akwa Y, Baulieu EE. 1995. Progesterone synthesis and myelin formation by Schwann cells. Science 268(5216):1500-1503. Kohchi C, Ukena K, Tsutsui K. 1998. Age- and region-specific expressions of the messenger RNAs encoding for steroidogenic enzymes p450scc, P450c17 and 3beta-HSD in the postnatal rat brain. Brain Res 801(1-2):233-238. Lala DS, Rice DA, Parker KL. 1992. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 6(8):1249-1258. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. 1986. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232(4753):1004-1007. Mellon SH, Deschepper CF. 1993. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 629(2):283-292. Mellon SH, Griffin LD. 2002. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 13(1):35-43. Mellon SH, Griffin LD, Compagnone NA. 2001. Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev 37(1-3):3-12. Miller WL. 1988. Molecular biology of steroid hormone synthesis. Endocr Rev 9(3):295-318. Miller WL. 2002. Androgen biosynthesis from cholesterol to DHEA. Mol Cell Endocrinol 198(1-2):7-14. Mukai H, Tsurugizawa T, Ogiue-Ikeda M, Murakami G, Hojo Y, Ishii H, Kimoto T, Kawato S. 2006. Local neurosteroid production in the hippocampus: influence on synaptic plasticity of memory. Neuroendocrinology 84(4):255-263. Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ. 1996. PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17(3):413-422. Nagy A. 2000. Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99-109. Ni M, Dehesh K, Tepperman JM, Quail PH. 1996. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell 8(6):1041-1059. Pallai R, Simpkins H, Chen J, Parekh HK. 2010. The CCAAT box binding transcription factor, nuclear factor-Y (NF-Y) regulates transcription of human aldo-keto reductase 1C1 (AKR1C1) gene. Gene 459(1-2):11-23. Pezzolesi MG, Zbuk KM, Waite KA, Eng C. 2007. Comparative genomic and functional analyses reveal a novel cis-acting PTEN regulatory element as a highly conserved functional E-box motif deleted in Cowden syndrome. Hum Mol Genet 16(9):1058-1071. Rada-Iglesias A, Ameur A, Kapranov P, Enroth S, Komorowski J, Gingeras TR, Wadelius C. 2008. Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders. Genome Res 18(3):380-392. Ronchi A, Bellorini M, Mongelli N, Mantovani R. 1995. CCAAT-box binding protein NF-Y (CBF, CP1) recognizes the minor groove and distorts DNA. Nucleic Acids Res 23(22):4565-4572. Sanne JL, Krueger KE. 1995. Expression of cytochrome P450 side-chain cleavage enzyme and 3 beta-hydroxysteroid dehydrogenase in the rat central nervous system: a study by polymerase chain reaction and in situ hybridization. J Neurochem 65(2):528-536. Schumacher M, Guennoun R, Robert F, Carelli C, Gago N, Ghoumari A, Gonzalez Deniselle MC, Gonzalez SL, Ibanez C, Labombarda F, Coirini H, Baulieu EE, De Nicola AF. 2004. Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Horm IGF Res 14 Suppl A:S18-33. Schumacher M, Sitruk-Ware R, De Nicola AF. 2008. Progesterone and progestins: neuroprotection and myelin repair. Curr Opin Pharmacol 8(6):740-746. Sher N, Yivgi-Ohana N, Orly J. 2007. Transcriptional regulation of the cholesterol side chain cleavage cytochrome P450 gene (CYP11A1) revisited: binding of GATA, cyclic adenosine 3',5'-monophosphate response element-binding protein and activating protein (AP)-1 proteins to a distal novel cluster of cis-regulatory elements potentiates AP-2 and steroidogenic factor-1-dependent gene expression in the rodent placenta and ovary. Mol Endocrinol 21(4):948-962. Shih MC, Chiu YN, Hu MC, Guo IC, Chung BC. 2011. Regulation of steroid production: analysis of Cyp11a1 promoter. Mol Cell Endocrinol 336(1-2):80-84. Slominski A, Ermak G, Mihm M. 1996. ACTH receptor, CYP11A1, CYP17 and CYP21A2 genes are expressed in skin. J Clin Endocrinol Metab 81(7):2746-2749. Soriano P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70-71. Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A. 2006. In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. Eur J Neurosci 23(9):2255-2264. Stromstedt M, Waterman MR. 1995. Messenger RNAs encoding steroidogenic enzymes are expressed in rodent brain. Brain Res Mol Brain Res 34(1):75-88. Tantin D, Schild-Poulter C, Wang V, Hache RJ, Sharp PA. 2005. The octamer binding transcription factor Oct-1 is a stress sensor. Cancer Res 65(23):10750-10758. Ukena K, Usui M, Kohchi C, Tsutsui K. 1998. Cytochrome P450 side-chain cleavage enzyme in the cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology 139(1):137-147. Vargova K, Curik N, Burda P, Basova P, Kulvait V, Pospisil V, Savvulidi F, Kokavec J, Necas E, Berkova A, Obrtlikova P, Karban J, Mraz M, Pospisilova S, Mayer J, Trneny M, Zavadil J, Stopka T. 2011. MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood 117(14):3816-3825. Wang H, Jiang Z, Wong YW, Dalton WS, Futscher BW, Chan VT. 1997. Decreased CP-1 (NF-Y) activity results in transcriptional down-regulation of topoisomerase IIalpha in a doxorubicin-resistant variant of human multiple myeloma RPMI 8226. Biochem Biophys Res Commun 237(2):217-224. Wu FS, Gibbs TT, Farb DH. 1991. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 40(3):333-336. Wu HS, Lin HT, Wang CK, Chiang YF, Chu HP, Hu MC. 2007. Human CYP11A1 promoter drives Cre recombinase expression in the brain in addition to adrenals and gonads. Genesis 45(2):59-65. Xiao JH, Davidson I, Ferrandon D, Rosales R, Vigneron M, Macchi M, Ruffenach F, Chambon P. 1987. One cell-specific and three ubiquitous nuclear proteins bind in vitro to overlapping motifs in the domain B1 of the SV40 enhancer. EMBO J 6(10):3005-3013. Zhang P, Rodriguez H, Mellon SH. 1995. Transcriptional regulation of P450scc gene expression in neural and steroidogenic cells: implications for regulation of neurosteroidogenesis. Mol Endocrinol 9(11):1571-1582. Zhang Q, Liu Q, Austin C, Drummond I, Pierce EA. 2012. Knockdown of ttc26 disrupts ciliogenesis of the photoreceptor cells and the pronephros in zebrafish. Mol Biol Cell 23(16):3069-3078. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6727 | - |
dc.description.abstract | 目前已證實許多類固醇荷爾蒙除了會在腎上腺、性腺與胎盤等處合成外,於中樞神經系統中也可以自行生成類固醇荷爾蒙,這些神經性類固醇荷爾蒙與許多神經生理功能相關,如神經細胞的凋亡、髓鞘的形成、影響記憶與學習的過程還有情緒的產生等。類固醇荷爾蒙以膽固醇 (cholesterone) 做為原料,經細胞色素P450膽固醇側鏈截切酶 (cytochrome P450 side chain cleavage,P450scc) 轉換成孕烯醇酮 (pregnenolone),此步驟為整個類固醇生成步驟之第一步,同時也是速率決定步驟。因此,可表現P450scc的CYP11A1其調控機轉在類固醇荷爾蒙的生成以至於類固醇荷爾蒙所影響的生理功能中具有重大的意義。CYP11A1在一般類固醇荷爾蒙生成組織的調控已經被詳細探討,但在腦中卻因表現量低,其表現分布以及轉錄調控機制目前仍不清楚。本實驗室過去利用基因轉殖小鼠模式說明4.4 kb長之CYP11A1啟動子在腦中具有轉錄活性,更發現在3.3 kb左右之300 bp的序列決定了CYP11A1啟動子是否可以驅動報導基因在間腦、中腦以及嗅覺上皮細胞等腦區表現,因此我們判斷該段序列與CYP11A1啟動子的腦部調控有關。為了釐清這段啟動子範圍可能含有的調控序列,本論文將此300 bp分成數段,與小鼠嗅覺上皮細胞核蛋白質萃取物進行凝膠遷移 (electrophoresis mobility shift assay,EMSA) 反應,期望能找到可與核蛋白質反應的結合位。結果發現嗅覺上皮細胞之細胞核萃取液,至少有四種分子可辨識此段序列,具專一性之結合。顯示這些序列對CYP11A1啟動子於神經系統之轉錄調控可能具有相當的重要性。
以基因轉殖小鼠模式研究啟動子的調控耗時費力,因此我們想建立一套有效率的體外 (in vitro) 基因轉入系統,可驗證EMSA的結果。因此我建立了視網膜電穿孔轉染系統,測試啟動子在視網膜上的轉錄活性。當轉入CMV啟動子可成功驅動報導基因表現於視網膜組織,但轉入CYP11A1啟動子無法觀察到報導基因的表現,說明CYP11A1啟動子轉錄活性過低,無法利用體外視網膜培養系統偵測其活性。 | zh_TW |
dc.description.abstract | Abstract
Steroid hormones are mainly synthesized in adrenal cortex, gonads and placenta. Recent studies indicate that they are also produced in CNS. These so-called neurosteroids do affect physiological functions including neural survival, myelination, neurogenesis, etc. CYP11A1 encodes P450scc (cytochrome P450 side chain cleavage), which catalyzes the first and the rate-limiting step during steroidogenesis that changes cholesterol into pregnenolone. Thus, CYP11A1 plays an important part in steroidogenesis. CYP11A1 can be expressed in steroidogenic tissue, but at low level in brain. This makes CYP11A1 difficult to be detected and studied in brain. We tried to investigate the regulation and distribution of CYP11A1 by transgenic mice and proved that 4.4 kb length of CYP11A1 promoter is able to promote Cre recombinase expression in brain. Furthermore, we have curtailed the range which may contain the potential DNA elements in CYP11A1 promoter. In this thesis, we spliced the potential regulatory sequence into short segments and incubated them with mouse olfactory epithelium nuclear extracts for electrophoretic mobility shift assay (EMSA). Our results indicate that the binding sequences of olfactory epithelium nuclear molecules do exist in CYP11A1 promoter and may play important roles in its neural regulation. Since using transgenic mice for promoter research costs time and money, we are looking for some other in vitro transgenic system. Therefore, we constructed the retina electroporation system. We sent CYP11A1 promoter with Cre recombinase as the reporter gene in to retina tissue dissociated from mice cub. The results showed that although the retina electroporation system is able to transfect plasmids in to retina tissue, it still cannot help the weak promoter to trigger the reporter gene expression. In summary, this system is suitable for promoter studies except CYP11A1 promoter. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T09:16:59Z (GMT). No. of bitstreams: 1 ntu-101-R99441001-1.pdf: 1998591 bytes, checksum: 449b4243fec2bcbe10c01109c1e8feea (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
圖次 3 表次 3 摘要 4 Abstract 6 第一章 導論 7 一、 類固醇荷爾蒙 (steroid hormone) 7 二、 神經類固醇 (neurosteroid) 7 1. 神經類固醇之發現 7 2. 神經類固醇之功能 8 三、 CYP11A1基因特性 9 1. CYP11A1基因的表現分布 9 2. 人類CYP11A1啟動子於典型類固醇生成組織的調控 10 3. CYP11A1啟動子於腦部的調控 10 四、 Cre-loxP系統 11 五、 研究目的 12 第二章 材料與方法 14 一、凝膠遷移 (Eelectrophoresis mobility shift assay,EMSA) 14 二、西方墨點法 17 三、 質體 18 四、 視網膜組織原代培養 19 五、 視網膜電穿孔轉染法 22 六、 小鼠視網膜組織X-gal 酵素活性染色 22 第三章 結果 24 一、嗅覺上皮細胞內具有可與CYP11A1啟動子序列結合之分子 24 1. 嗅覺上皮組織細胞核蛋白質萃取 24 2. CYP11A1啟動子序列-3.5 kb與-3.2 kb間有潛在調控因子 24 3. -3447至-3391序列 (2號探針) 之EMSA分析 25 4. -3400至-3346序列 (3號探針) 之EMSA分析 25 5. -3305至-3247序列 (5號探針)之EMSA分析 27 二、建立視網膜電穿孔轉染法進行體外基因轉入 28 1. 視網膜電穿孔轉染法可成功轉入外來基因 28 2. CYP11A1啟動子轉入視網膜組織之表現 29 第四章 討論 30 一、CYP11A1啟動子-3400與-3346 (3號探針) 間序列之分析結果 30 二、CYP11A1啟動子-3305與-3247間序列 (5號探針) 之分析結果 33 三、體外轉殖方式之建立 34 四、未來可進行之實驗 34 參考文獻 36 圖次 圖一、嗅覺上皮組織細胞核蛋白質萃取之分析 42 圖二、CYP11A1啟動子-3.5k與-3.2k間之DNA序列EMSA分析 43 圖三、CYP11A1啟動子-3447與-3391間之DNA序列EMSA反應 44 圖四、CYP11A1啟動子-3400與-3346間之DNA序列EMSA反應 45 圖五、CYP11A1啟動子-3400與-3346間分段之DNA序列EMSA反應 46 圖六、CYP11A1啟動子-3400與-3346間序列經定點突變後之EMSA反應 47 圖七、CYP11A1啟動子-3305與-3247間之DNA序列EMSA反應 48 圖八、CYP11A1啟動子-3305與-3247間分段之DNA序列EMSA反應 49 圖九、CYP11A1啟動子-3305與-3247間序列經定點突變後之EMSA反應 50 圖十、視網膜電穿孔轉染法之建立 51 圖十一、視網膜電穿孔轉染法分析CYP11A1啟動子之活性 52 圖十二、CYP11A1啟動子之轉錄因子結合位預測 53 表次 表一、視網膜電穿孔轉染法之測試 54 | |
dc.language.iso | zh-TW | |
dc.title | 調控CYP11A1啟動子於小鼠嗅覺上皮細胞表現之序列分析 | zh_TW |
dc.title | Characterization of the DNA elements that regulate the expression of CYP11A1 promoter in mouse olfactory epithelium | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧主欽(Juu-Chin Lu),徐立中(Li-Chung Hsu),孫錦虹(Chin-Hung SUN) | |
dc.subject.keyword | CYP11A1啟動子,嗅覺上皮細胞, | zh_TW |
dc.subject.keyword | CYP11A1 promoter,regulation,olfactory epithelium, | en |
dc.relation.page | 54 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-10-26 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生理學研究所 | zh_TW |
顯示於系所單位: | 生理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 1.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。