Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67263
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良正(Liang-Jenq Leu)
dc.contributor.authorJia-Wen Lianen
dc.contributor.author連嘉玟zh_TW
dc.date.accessioned2021-06-17T01:25:35Z-
dc.date.available2022-05-25
dc.date.copyright2017-08-11
dc.date.issued2017
dc.date.submitted2017-08-08
dc.identifier.citationAndreassen, E., Clausen, A., Schevenels, M.,Lazarov, B. S., & Sigmund, O. (2011). Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43(1), 1-16.

Ansola, R., Canales, J., Tarrago, J. A., & Rasmussen, J.(2004). Combined shape and reinforcement layout optimization of shell structures. Structural and Multidisciplinary Optimization, 27(4), 219-227

Arora, J. S. (2011). Introduction to Optimum Design. London, Academic Press.
Belblidia, F., Lee, J. E. B., Rechak, S., & Hinton, E.(2001). Topology optimization of plate structures using a single-or three-layered artificial material model. Advances in Engineering Software, 32(2), 159-168.

Bendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural and Multidisciplinary Optimization 1(4): 193-202.

Bendsøe, M. P. (2004). Topology Optimization: Theory, Methods, and Applications. New York: Springer.

Bendsøe, M. P. and Sigmund, O. (1999). Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 69(9-10), 635-654.
Bézier, P. E. (1968). How Renault uses numerical control for car body design and tooling (No. 680010). SAE Technical Paper.

Espath, L. F. R., Linn, R. V., & Awruch, A. M. (2011). Shape optimization of shell structures based on NURBS description using automatic differentiation. International Journal for Numerical Methods in Engineering, 88(7), 613-636.

Evgrafov, A., & Marhadi, K. (2012). Control in the coefficients with variational crimes: Application to topology optimization of Kirchhoff plates. Computer Methods in Applied Mechanics and Engineering, 237, 27-38.

Huang, X. and Xie, Y. M. (2007). Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elements in Analysis and Design 43(14): 1039-1049.

Hughes, T. J., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer methods in applied mechanics and engineering, 194(39), 4135-4195.

Kang, P., & Youn, S. K. (2016). Isogeometric topology optimization of shell structures using trimmed NURBS surfaces.Finite Elements in Analysis and Design, 120, 18-40.

Khan, M. R. (1984). Optimality criterion techniques applied to frames having general cross-sectional relationships. AIAA Journal, 22(5), 669-676.

Kirsch, U. (1993). Structural Optimization fundamentals and Applications, Springer-Verlag, Berlin Heidelberg.

Lee, S. J., Bae, J. E., & Hinton, E. (2000). Shell topology optimization using the layered artificial material model. International journal for numerical methods in engineering, 47(4), 843-867.

Leu, L. J., Mukherjee, S., Wei, X. and Chandra, A., (1994). Shape optimization in elasticity and elasto-viscoplasticity by the boundary element method. International Journal of Solids and Structures 31(4): 533-550.

Li, Q., Steven, G. P. and Xie, Y. M. (2001). A simple checkerboard suppression algorithm for evolutionary structural optimization. Structural and Multidisciplinary Optimization 22(3): 230-239.

Li, Z., & Navon, I. M. (2001). Optimality of variational data assimilation and its relationship with the Kalman filter and smoother. Quarterly Journal of the Royal Meteorological Society, 127(572), 661-683.

Liang, Q. Q., Xie, Y. M., & Steven, G. P. (2001). A performance index for topology and shape optimization of plate bending problems with displacement constraints. Structural and Multidisciplinary Optimization, 21(5), 393-399.

Liu, K., & Tovar, A. (2014). An efficient 3D topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 50(6), 1175-1196.

Luo, Q., & Tong, L. (2017). A deformation mechanism based material model for topology optimization of laminated composite plates and shells. Composite Structures, 159, 246-256.

Pedersen, N. L. (2001). On topology optimization of plates with prestress. International Journal for Numerical Methods in Engineering, 51(2), 225-239.

Querin, O. M., Steven G. P. and Xie, Y. M. (1998). Evolutionary structural optimization (ESO) using a bidirectional algorithm. Engineering Computations 15(8): 1031-1048.

Rouhi, M., Rais-Rohani, M. and Williams, T. N. (2010). Element exchange method for topology optimization. Structural and Multidisciplinary Optimization 42(2): 215-231.

Rozvany, G. I., Zhou, M., & Birker, T. (1992). Generalized shape optimization without homogenization. Structural and Multidisciplinary Optimization, 4(3), 250-252.

Schoenberg, I. J. (1946). Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae. Quarterly of Applied Mathematics, 4(2), 112-141.

Sigmund, O. (1994). Design of Materials Structures Using Topology Optimization. Department of Solid Mechanics, Technical University of Denmark.
Sigmund, O. (1997). On the design of compliant mechanisms using topology optimization. Journal of Structural Mechanics, 25(4), 493-524.

Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and multidisciplinary optimization, 21(2), 120-127.

Stegmann, J., & Lund, E. (2005). Nonlinear topology optimization of layered shell structures. Structural and Multidisciplinary Optimization, 29(5), 349-360.

Venkayya, V. B. (1993). Structural Optimization: Status and Promise. AIAA Series: Progress in Aeronautics and Astronautics, 150.

Versprille, K. J. (1975). Computer-aided design applications of the rational B-spline approximation form.

Xie, Y. M. (1997). Evolutionary Structural Optimization. London, New York: Springer.

Xie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization. Computers & structures, 49(5), 885-896.

Zuo, Z. H., & Xie, Y. M. (2015). A simple and compact Python code for complex 3D topology optimization. Advances in Engineering Software, 85, 1-11.

王建凱(2005),應用有限元素套裝軟體 ABAQUS 於結構最佳化演進,臺灣大學土木工程學研究所學位論文。
李宗豪(2005),以有限元素套裝軟體為分析引擎之最佳化設計系統架構開發,國立台灣大學土木工程學研究所碩士論文。

施可葳(2013),元素交換法於結構拓樸最佳化之改良與應用,國立臺灣大學土木工程學研究所碩士論文。

郭哲宇(2011),加入隨機化之拓樸最佳化方法之研究及應用,國立臺灣大學土木工程學研究所碩士論文。

康銘展(2007),整合有限元素商業軟體於最佳化設計系統及其應用,臺灣大學土木工程學研究所學位論文。

陳俊穎(2016),應用元素交換法於三維結構拓樸最佳化,臺灣大學土木工程學研究所學位論文。

蘇穎香(2006),應用最佳化設計系統於板、殼結構,臺灣大學土木工程學研究所學位論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67263-
dc.description.abstract本研究使用直譯式程式語言Python開發結合有限元素套裝軟體ABAQUS的結構最佳化程式,將設計領域拓展至三維不規則板殼結構的應用。
  ABAQUS軟體能簡化繁瑣的有限元素分析過程,本研究將應用此程式於較複雜難解的結構問題,包含積層板的幾何非線性分析、結合梁元素的板殼加勁分析與計算厚度方向差異的連續殼有限元素分析等例題。
  本研究主要分為曲面最佳化與拓樸最佳化兩部分,分別撰寫兩套符合設計需求之自動化建模與分析程式,並探討適用之最佳化演算法。曲面最佳化以NURBS曲面的數值建模方法設計,使用Python第三方模組提供之循序二次規劃法(Sequential Quadratic Programming, SQP)進行最佳化分析。
  拓樸最佳化演算法採用本研究團隊過去曾使用的最佳化演進法ESO (Evolutionary structural optimization, Xie et al. 1993 1997)、元素交換法EEM (Element Exchange Method, Rouhi et al. 2010)和固體等向性懲罰函數法SIMP (Solid isotropic material with penalization, Bendsøe 1989; Rozvany et al. 1992)三種方法,並比較三種方法應用於板殼拓樸結果的正確性、穩定性與收斂速度。其中,ESO容易落入局域解、EEM所需迭代步數較多;SIMP較為穩定但計算量較大。此外,本研究亦探討不同設計變數之拓樸方法,助於設計較符合現實情況的板殼結構問題。
  本程式之板殼模型的最佳化設計結果與文獻結果比較後,結果大致吻合,驗證最佳化設計系統於板、殼問題的正確性與廣用性,以期推廣最佳化設計的運用範圍並吻合真實建築設計的需求。
zh_TW
dc.description.abstractThis thesis integrates structural optimization problem of 3-dimensional irregular geometric plate and shell structure with Python program for iterative calculation and the FEM commercial software ABAQUS as an analysis engine.
  Since ABAQUS simplifies the difficult and complicated FEM analysis process, it will be of great benefit to several hard-solving structural iterative optimization design problem, including the geometric nonlinear analysis of laminated plates, plates and shells analysis that combine with stifferner of beam-element, and multi-layered plate analysis by using continuum shell element for solving thickness direction behavior, etc.
  In this thesis, shape optimization and topology optimization problem are classified as two main part, and codes with suitable algorithm for automatic modeling and optimization analysis are designed respectively. Shape optimization uses NURBS surface for modeling and Python third-party optimizing module for sequential quadratic programming(SQP) method.
  Topology optimization algorithm uses the past designing methods in our research group, including evolutionary structural optimization (ESO; Xie et al. 1993 1997), element exchange method (EEM; Rouhi et al. 2010),and solid isotropic material with penalization (SIMP; Bendsøe 1989; Rozvany et al. 1992). Comparing correctness, stability and rate of convergence of topology result, it can be found that ESO algorithm is easy to fall into locally optimum solutions, while EEM and SIMP algorithm are both easier to perform better results. However, imperfectness of EEM and SIMP still exist. EEM takes more time for a large number of iteration steps; SIMP used to perform stable result but takes more calculation of programming.
  The Python program in this thesis is tested. That is, most of the plate and shell structure optimization problems lead to the same result as the past research. Verifying the correctness and applicability of this program, it is expected to expand range of application and meet the requirements of architecture design.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:25:35Z (GMT). No. of bitstreams: 1
ntu-106-R04521217-1.pdf: 16488043 bytes, checksum: 5edb8bdf1f3a1dda042e4bcb5c46bae9 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 iii
摘要 v
Abstract vii
目錄 ix
圖目錄 xiii
表目錄 xvii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究內容 4
第二章 結構最佳化方法 5
2.1 前言 5
2.2 最佳化問題描述 5
2.3 結構最佳化 7
2.3.1 尺寸最佳化 8
2.3.2 形狀最佳化 8
2.3.3 拓樸最佳化 8
2.4 結構最佳化分析方法介紹 9
2.4.1 數學規劃法(Mathematical Programming,MP ) 9
2.4.2 最佳化條件法(Optimum Criteria Method,OC) 10
2.5 結構最佳化演進法(Evolutionary Structural Optimization,ESO) 11
2.5.1 結構最佳化演進法流程與概念 12
2.5.2 結構最佳化演進法之參數 13
2.5.2.1 敏感度因子(Sensitivity Number) 13
2.5.2.2 移除比率(Removal Ratio, RR)與演進速率(Evolution Ratio, ER) 13
2.5.3 雙向結構最佳化演進法 14
2.5.4 棋盤化效應(Checkerboard) 15
2.5.4.1 敏感度濾波(Sensitivity Filter) 15
2.5.4.2 簡易平滑化方法(Smooth Technique) 16
2.5.5 收斂準則 17
2.5.5.1 最大迭代步數 17
2.5.5.2 拓樸參數變化量收斂 17
2.6 元素交換法(Element Exchange Method, EEM) 18
2.6.1 元素交換法流程與概念 18
2.6.2 元素交換機制(Element Exchange, EE) 19
2.7 固體等向性懲罰函數法(Solid Isotropic Material with Penalization,SIMP) 20
2.7.1 固體等向性懲罰函數法流程與概念 20
2.7.2 SIMP最佳化條件法(OC) 22
2.8 小結 22
第三章 最佳化程式設計 29
3.1 前言 29
3.2 有限元素分析軟體ABAQUS 29
3.3 拓樸最佳化程式架構 30
3.3.1 變數設定函式 30
3.3.2 有限元素分析設定函式 31
3.3.3 平滑化分析與最佳化分析模組 31
3.4 曲面最佳化程式架構 32
3.4.1 設定NURBS曲面參數函式 32
3.4.2 設定模型參數函式 33
3.4.3 最佳化分析與影像輸出模組 33
3.5 小結 33
第四章 板、殼拓樸最佳化設計 40
4.1 前言 40
4.2 平板拓樸最佳化 40
4.3 圓形板之拓樸最佳化 43
4.3.1 不均等網格之最佳化設計 43
4.3.2 改變特定元素之初始設計變數方法 45
4.4 積層板之拓樸非線性最佳化分析 48
4.5 不規則形狀之薄殼拓樸最佳化 51
4.6 梁元素加勁的拓樸最佳化 53
4.7 小結 54
第五章 結合不同類型設計變數與使用SC8R元素之最佳化設計 96
5.1 前言 96
5.2 以板厚為設計變數之拓樸最佳化 96
5.3 以元素孔洞大小為設計變數之拓樸最佳化 97
5.4 使用SC8R元素之拓樸最佳化設計 98
5.4.1 SC8R元素與S8R元素之介紹與比較 98
5.4.2 具不可設計層之拓樸最佳化 102
5.4.3 多層板設計之拓樸最佳化 103
5.5 小結 103
第六章 NURBS曲面最佳化 119
6.1 前言 119
6.2 NURBS基本介紹 119
6.3 例題分析 121
6.4 小結 123
第七章 結論與未來展望 150
7.1 結論 150
7.2 未來展望 151
參考文獻 152
簡  歷 158
dc.language.isozh-TW
dc.subject有限元素套裝軟體zh_TW
dc.subject結構最佳化zh_TW
dc.subject拓樸最佳化zh_TW
dc.subject形狀最佳化zh_TW
dc.subject板殼結構zh_TW
dc.subjectStructural Optimizationen
dc.subjectTopology Optimizationen
dc.subjectShape Optimizationen
dc.subjectPlate and Shell Structureen
dc.subjectFinite Element Packageen
dc.title以Python整合有限元素軟體ABAQUS於板殼結構最佳化zh_TW
dc.titleUsing Python to Integrate Finite Element Package ABAQUS in Structural Optimization of Shell and Plateen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊杉(Chuin-Shan Chen),王建凱(Chien-Kai Wang),宋裕祺(Yu-chi,Sung)
dc.subject.keyword結構最佳化,拓樸最佳化,形狀最佳化,板殼結構,有限元素套裝軟體,zh_TW
dc.subject.keywordStructural Optimization,Topology Optimization,Shape Optimization,Plate and Shell Structure,Finite Element Package,en
dc.relation.page158
dc.identifier.doi10.6342/NTU201702768
dc.rights.note有償授權
dc.date.accepted2017-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
16.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved