Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67243
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 康敦彥(Dun-Yen Kang) | |
dc.contributor.author | Chon-Hei Lam | en |
dc.contributor.author | 林駿熙 | zh_TW |
dc.date.accessioned | 2021-06-17T01:24:48Z | - |
dc.date.available | 2027-08-07 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-08 | |
dc.identifier.citation | 1 Gascon, J. et al. Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives. Chem. Mater. 24, 2829-2844, doi:10.1021/cm301435j (2012).
2 Valtchev, V. & Tosheva, L. Porous Nanosized Particles: Preparation, Properties, and Applications. Chem. Rev. 113, 6734-6760, doi:10.1021/cr300439k (2013). 3 Parlett, C. M. A., Wilson, K. & Lee, A. F. Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876-3893, doi:10.1039/c2cs35378d (2013). 4 Ivanova, II & Knyazeva, E. E. Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chem. Soc. Rev. 42, 3671-3688, doi:10.1039/c2cs35341e (2013). 5 Lee, J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuator B: Chem. 140, 319-336, doi:http://dx.doi.org/10.1016/j.snb.2009.04.026 (2009). 6 Yu, N., Wang, R. Z. & Wang, L. W. Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39, 489-514, doi:10.1016/j.pecs.2013.05.004 (2013). 7 Serrano, D. P., Aguado, J. & Escola, J. M. Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals. ACS Catal. 2, 1924-1941, doi:10.1021/cs3003403 (2012). 8 Moliner, M., Martinez, C. & Corma, A. Multipore Zeolites: Synthesis and Catalytic Applications. Angew. Chem.-Int. Edit. 54, 3560-3579, doi:10.1002/anie.201406344 (2015). 9 Ennaert, T. et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 45, 584-611, doi:10.1039/c5cs00859j (2016). 10 Van Speybroeck, V. et al. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044-7111, doi:10.1039/c5cs00029g (2015). 11 Buonomenna, M. G. Nano-enhanced reverse osmosis membranes. Desalination 314, 73-88, doi:10.1016/j.desal.2013.01.006 (2013). 12 Kim, W. G. & Nair, S. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci. 104, 908-924, doi:10.1016/j.ces.2013.09.047 (2013). 13 Shenvi, S. S., Isloor, A. M. & Ismail, A. F. A review on RO membrane technology: Developments and challenges. Desalination 368, 10-26, doi:10.1016/j.desal.2014.12.042 (2015). 14 Daer, S., Kharraz, J., Giwa, A. & Hasan, S. W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination 367, 37-48, doi:10.1016/j.desal.2015.03.030 (2015). 15 Mousty, C. & Walcarius, A. Electrochemically assisted deposition by local pH tuning: a versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials. J. Solid State Electrochem. 19, 1905-1931, doi:10.1007/s10008-014-2570-4 (2015). 16 Shaikhutdinov, S. & Freund, H. J. Ultra-thin silicate films on metals. J. Phys.-Condes. Matter 27, 15, doi:10.1088/0953-8984/27/44/443001 (2015). 17 Mandal, S., Williams, H. L. & Hunt, H. K. Techniques for microscale patterning of zeolite-based thin films. Microporous Mesoporous Mat. 203, 245-258, doi:10.1016/j.micromeso.2014.10.038 (2015). 18 Mir, M. A. et al. Utilization of zeolite/polymer composites for gas sensing: A review. Sens. Actuator B-Chem. 242, 1007-1020, doi:10.1016/j.snb.2016.09.152 (2017). 19 Fine, G. F., Cavanagh, L. M., Afonja, A. & Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 10, 5469-5502, doi:10.3390/s100605469 (2010). 20 Lee, K. P., Arnot, T. C. & Mattia, D. A review of reverse osmosis membrane materials for desalination-Development to date and future potential. J. Membr. Sci. 370, 1-22, doi:10.1016/j.memsci.2010.12.036 (2011). 21 Varoon, K. et al. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science 334, 72-75, doi:10.1126/science.1208891 (2011). 22 Chen, H. Y. et al. Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure. J. Am. Chem. Soc. 133, 12390-12393, doi:10.1021/ja2046815 (2011). 23 Ma, N., Wei, J., Liao, R. H. & Tang, C. Y. Y. Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis. J. Membr. Sci. 405, 149-157, doi:10.1016/j.memsci.2012.03.002 (2012). 24 Lew, C. M., Cai, R. & Yan, Y. Zeolite Thin Films: From Computer Chips to Space Stations. Acc. Chem. Res. 43, 210-219, doi:10.1021/ar900146w (2010). 25 Lind, M. L., Suk, D. E., Nguyen, T. V. & Hoek, E. M. V. Tailoring the Structure of Thin Film Nanocomposite Membranes to Achieve Seawater RD Membrane Performance. Environ. Sci. Technol. 44, 8230-8235, doi:10.1021/es101569p (2010). 26 Pendergast, M. T. M., Nygaard, J. M., Ghosh, A. K. & Hoek, E. M. V. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261, 255-263, doi:10.1016/j.desa1.2010.06.008 (2010). 27 Huang, L. et al. Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals. J. Am. Chem. Soc. 122, 3530-3531, doi:10.1021/ja994240u (2000). 28 Claes, S. et al. Preparation and benchmarking of thin film supported PTMSP-silica pervaporation membranes. J. Membr. Sci. 389, 265-271, doi:10.1016/j.memsci.2011.10.035 (2012). 29 Verboekend, D. & Perez-Ramirez, J. Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 1, 879-890, doi:10.1039/c1cy00150g (2011). 30 Li, K. H., Valla, J. & Garcia-Martinez, J. Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem 6, 46-66, doi:10.1002/cctc.201300345 (2014). 31 Inayat, A., Reinhardt, B., Uhlig, H., Einicke, W. D. & Enke, D. Silica monoliths with hierarchical porosity obtained from porous glasses. Chem. Soc. Rev. 42, 3753-3764, doi:10.1039/c2cs35304k (2013). 32 Schwieger, W. et al. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353-3376, doi:10.1039/c5cs00599j (2016). 33 Roth, W. J., Gil, B., Makowski, W., Marszalek, B. & Eliasova, P. Layer like porous materials with hierarchical structure. Chem. Soc. Rev. 45, 3400-3438, doi:10.1039/c5cs00508f (2016). 34 Schneider, D., Mehlhorn, D., Zeigermann, P., Karger, J. & Valiullin, R. Transport properties of hierarchical micro-mesoporous materials. Chem. Soc. Rev. 45, 3439-3467, doi:10.1039/c5cs00715a (2016). 35 Qin, Z. X., Gilson, J. P. & Valtchev, V. Mesoporous zeolites by fluoride etching. Curr. Opin. Chem. Eng. 8, 1-6, doi:10.1016/j.coche.2015.01.002 (2015). 36 Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes - a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128-7154, doi:10.1039/C5CS00292C (2015). 37 Snyder, M. A. & Tsapatsis, M. Hierarchical Nanomanufacturing: From Shaped Zeolite Nanoparticles to High-Performance Separation Membranes. Angew. Chem., Int. Ed. 46, 7560-7573, doi:10.1002/anie.200604910 (2007). 38 Lai, Z. et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation. Science 300, 456-460, doi:10.1126/science.1082169 (2003). 39 Pham, T. C. T., Kim, H. S. & Yoon, K. B. Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science 334, 1533-1538, doi:10.1126/science.1212472 (2011). 40 Huang, A. S., Liang, F. Y., Steinbach, F. & Caro, J. Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker. J. Membr. Sci. 350, 5-9, doi:10.1016/j.memsci.2009.12.029 (2010). 41 White, J. C., Dutta, P. K., Shqau, K. & Verweij, H. Synthesis of Ultrathin Zeolite Y Membranes and their Application for Separation of Carbon Dioxide and Nitrogen Gases. Langmuir 26, 10287-10293, doi:10.1021/la100463j (2010). 42 Adams, R. T. et al. CO2-CH4 permeation in high zeolite 4A loading mixed matrix membranes. J. Membr. Sci. 367, 197-203, doi:10.1016/j.memsci.2010.10.059 (2011). 43 Nik, O. G., Chen, X. Y. & Kaliaguine, S. Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 379, 468-478, doi:10.1016/j.memsci.2011.06.019 (2011). 44 Palomino, M., Corma, A., Rey, F. & Valencia, S. New Insights on CO2-Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir 26, 1910-1917, doi:10.1021/la9026656 (2010). 45 Wen, Q., Di, J. C., Jiang, L., Yu, J. H. & Xu, R. R. Zeolite-coated mesh film for efficient oil-water separation. Chem. Sci. 4, 591-595, doi:10.1039/c2sc21772d (2013). 46 Wang, Y. & Caruso, F. Macroporous Zeolitic Membrane Bioreactors. Adv. Funct. Mater. 14, 1012-1018, doi:10.1002/adfm.200400144 (2004). 47 Bosko, M. L., Munera, J. F., Lombardo, E. A. & Cornaglia, L. M. Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support. J. Membr. Sci. 364, 17-26, doi:10.1016/j.memsci.2010.07.039 (2010). 48 Kim, S. J., Xu, Z., Reddy, G. K., Smirniotis, P. & Dong, J. H. Effect of Pressure on High-Temperature Water Gas Shift Reaction in Microporous Zeolite Membrane Reactor. Ind. Eng. Chem. Res. 51, 1364-1375, doi:10.1021/ie201452y (2012). 49 Zhang, Y. T., Wu, Z. J., Hong, Z., Gu, X. H. & Xu, N. P. Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction. Chem. Eng. J. 197, 314-321, doi:10.1016/j.cej.2012.05.064 (2012). 50 Sachse, A., Galarneau, A., Fajula, F. & Coq, B. Synthesis of Zeolite Monoliths for Flow Continuous Processes. The Case of Sodalite as a Basic Catalyst. Chem. Mater. 22, 4123-4125, doi:10.1021/cm1014064 (2010). 51 Khajavi, S., Jansen, J. C. & Kapteijn, F. Application of a sodalite membrane reactor in esterification-Coupling reaction and separation. Catal. Today 156, 132-139, doi:10.1016/j.cattod.2010.02.042 (2010). 52 Tang, Z., Kim, S. J., Reddy, G. K., Dong, J. H. & Smirniotis, P. Modified zeolite membrane reactor for high temperature water gas shift reaction. J. Membr. Sci. 354, 114-122, doi:10.1016/j.memsci.2010.02.057 (2010). 53 Wang, X. B., Zhang, X. F., Liu, H., Yeung, K. L. & Wang, J. Q. Preparation of titanium silicalite-1 catalytic films and application as catalytic membrane reactors. Chem. Eng. J. 156, 562-570, doi:10.1016/j.cej.2009.04.018 (2010). 54 He, Y., Bagley, D. M., Leung, K. T., Liss, S. N. & Liao, B. Q. Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol. Adv. 30, 817-858, doi:10.1016/j.biotechadv.2012.01.015 (2012). 55 Seo, T. et al. Influence of Synthesis Process on Mechanical and Electrical Characteristics of Mesoporous Pure Silica-Zeolite. J. Electrochem. Soc. 158, H659-H665, doi:10.1149/1.3570582 (2011). 56 Wu, G. D., Zhang, H. L., Zhou, J. M., Huang, A. S. & Wan, Q. Proton conducting zeolite films for low-voltage oxide-based electric-double-layer thin-film transistors and logic gates. J. Mater. Chem. C 1, 5669-5674, doi:10.1039/c3tc31236d (2013). 57 Mandal, S., Planells, A. D. & Hunt, H. K. Impact of deposition and laser densification of Silicalite-1 films on their optical characteristics. Microporous Mesoporous Mat. 223, 68-78, doi:10.1016/j.micromeso.2015.10.035 (2016). 58 Mandal, S., Macoubrie, D. & Hunt, H. K. Patterning silicalite-1 films using carbon dioxide laser ablation. Microporous Mesoporous Mat. 204, 81-90, doi:10.1016/j.micromeso.2014.10.046 (2015). 59 Choi, M. et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 5, 718-723, doi:http://www.nature.com/nmat/journal/v5/n9/suppinfo/nmat1705_S1.html (2006). 60 Möller, K. & Bein, T. Pores Within Pores—How to Craft Ordered Hierarchical Zeolites. Science 333, 297-298, doi:10.1126/science.1208528 (2011). 61 Jiang, J. et al. Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science 333, 1131-1134, doi:10.1126/science.1208652 (2011). 62 Chen, L.-H. et al. Hierarchically structured zeolites: synthesis, mass transport properties and applications. J. Mater. Chem. 22, 17381-17403, doi:10.1039/C2JM31957H (2012). 63 Zhang, B., Davis, S. A. & Mann, S. Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films. Chem. Mater. 14, 1369-1375, doi:10.1021/cm011251p (2002). 64 Kirdeciler, S. K., Ozen, C. & Akata, B. Fabrication of nano- to micron-sized patterns using zeolites: Its application in BSA adsorption. Microporous Mesoporous Mat. 191, 59-66, doi:http://dx.doi.org/10.1016/j.micromeso.2014.02.041 (2014). 65 Tsukala, V. & Kouzoudis, D. Zeolite micromembrane fabrication on magnetoelastic material using electron beam lithography. Microporous Mesoporous Mat. 197, 213-220, doi:http://dx.doi.org/10.1016/j.micromeso.2014.06.017 (2014). 66 Ha, K. et al. Photochemical pattern transfer and patterning of continuous zeolite films on glass by direct dipping in synthesis gel. Adv. Mater. 13, 594-596, doi:10.1002/1521-4095(200104)13:8<594::aid-adma594>3.0.co;2-o (2001). 67 Ha, K., Lee, Y. J., Jung, D. Y., Lee, J. H. & Yoon, K. B. Micropatterning of oriented zeolite monolayers on glass by covalent linkage. Adv. Mater. 12, 1614-1617, doi:10.1002/1521-4095(200011)12:21<1614::aid-adma1614>3.0.co;2-h (2000). 68 Yang, P. et al. Hierarchically Ordered Oxides. Science 282, 2244 (1998). 69 Jiang, Z. GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Crystallogr. 48, 917-926, doi:doi:10.1107/S1600576715004434 %U https://doi.org/10.1107/S1600576715004434 (2015). 70 Kulak, A., Lee, Y. J., Park, Y. S. & Yoon, K. B. Orientation‐Controlled Monolayer Assembly of Zeolite Crystals on Glass and Mica by Covalent Linkage of Surface‐Bound Epoxide and Amine Groups. Angew. Chem. 112, 980-983 (2000). 71 Liu, Y., Li, Y. & Yang, W. Fabrication of highly b-oriented MFI film with molecular sieving properties by controlled in-plane secondary growth. J. Am. Chem. Soc. 132, 1768-1769 (2010). 72 Choi, J., Ghosh, S., Lai, Z. & Tsapatsis, M. Uniformly a‐Oriented MFI Zeolite Films by Secondary Growth. Angew. Chem. 118, 1172-1176 (2006). 73 Sahraei, N., Forberich, K., Venkataraj, S., Aberle, A. G. & Peters, M. Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si: H solar cells. Opt. Express 22, A53-A67 (2014). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67243 | - |
dc.description.abstract | 本研究提供一個可以在塗布沸石薄膜的同時,控制其自組裝以及晶面方向的通用方法。這個方法藉由界面活性劑的誘導沸石奈米顆粒的自組裝行為,在薄膜塗布過程中創造出大範圍規律的圓柱形圖案,並且能準確控制此圓形圖案之大小與深度。同時,利用此方法製備而成的沸石薄膜,其顆粒中之{100}晶面平行於基材。為了深入了解利用界面活性劑控制沸石奈米顆粒的自組裝機制,我們使用了光學顯微鏡,在加熱平台上即時觀察在不同沸石塗布溶液對於溫度之變化。從此實驗中我們觀察到界面活性劑在溫度上升時形成微胞(micelle)、在溫度下降時則和沸石水溶液形成一均一相。界面活性劑的微胞在高溫燒結後,便可能形成在沸石薄膜中所觀察到的圓形圖案。最後,我們量測各個薄膜樣品的光學霧度和介電常數。我們發現沸石薄膜中的圓形圖案大小,能夠有效調控薄膜介電常數與光學霧度。 | zh_TW |
dc.description.abstract | This paper reports on a generalized method by which to simultaneously manipulate the self-assembly and orientation of zeolite LTA nanocrystals. This process, referred to as surfactant-mediated self-assembly (SMSA), creates zeolite LTA thin films with long-range ordered cylindrical patterns, wherein the {100} faces of zeolite LTA crystals are preferably oriented parallel to the support surface. This approach makes it possible to control the diameter as well as the depth of the cylindrical patterns in zeolite thin films fabricated via scalable wet deposition. To elucidate the mechanism underlying the SMSA process, we applied in situ imaging to cast solutions subjected to a temperature swing. Our results indicate that the cylindrical patterns may develop from micelles of the surfactant, which make up a thermodynamic phase in the cast solution. We also demonstrate that the apparent dielectric constant and optical haze of the zeolite LTA thin films can be engineered by altering the dimensions of the cylindrical patterns. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:24:48Z (GMT). No. of bitstreams: 1 ntu-106-R04524094-1.pdf: 6961692 bytes, checksum: 53f92906bdcae7e74c16ffd9ac08f766 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Contents iv List of Figures vi Chapter 1 Introduction 1 1.1 Background 1 1.2 Patterned Thin Film 5 Chapter 2 Method 8 2.1 Materials 8 2.2 Synthesis of zeolite LTA cast solution 8 2.3 Deposition of zeolite LTA thin films 12 2.4 Surface modification of zeolite LTA thin films 17 2.5 Material Characterization 17 Chapter 3 Results and Discussion 20 3.1 Morphology of Zeolite Thin Films 20 3.2 Crystallinity of Zeolitem LTA Thin Films 24 3.3 Effects of Surfactant concentration 29 3.4 Effects of Spin coating speed 35 3.5 Effects of Substrate hydrophilicity 38 3.6 Formation of Patterns in LTA thin film 45 3.7 Electrical properties of LTA thin film 49 3.8 Optical properties of LTA thin film 52 Chapter 4 Conclusions 54 Appendix 55 References 59 | |
dc.language.iso | en | |
dc.title | 沸石薄膜的圖形化技術 | zh_TW |
dc.title | Techniques for patterning zeolite thin film | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林義?(Yi-Feng Lin),謝之真(Chih-Chen Hsieh) | |
dc.subject.keyword | 自組裝,結晶方向控制,沸石薄膜,階級結構, | zh_TW |
dc.subject.keyword | Self-assembly,crystal orientation control,zeolite film,hierarchical structure, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201702719 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
Appears in Collections: | 化學工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 6.8 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.