請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67234完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江簡富(Jean-Fu Kiang) | |
| dc.contributor.author | Po-Chih Chen | en |
| dc.contributor.author | 陳柏誌 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:24:31Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2017-08-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-08 | |
| dc.identifier.citation | [1] T. A. Kennedy, “A technique for specifying navigation system performance requirements in SAR motion compensation applications,” IEEE Position Location Navigation Symp., Las Vegas, NV, USA, pp. 118-126, Mar. 1990.
[2] S. Buckreuss, “Motion compensation for airborne SAR based on inertial data, RDM and GPS,” IEEE Geosci. Remote Sensing Symp., vol. 4, Pasadena, CA, USA, pp. 1971-1973, Aug. 1994. [3] A. Moreira and Y. Huang, “Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation,” IEEE Trans. Geosci. Remote Sensing, vol. 32, no. 5, pp. 1029-1040, Sep. 1994. [4] A. Moreira, J. Mittermayer, and R. Scheiber, “Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scanSAR imaging modes,” IEEE Trans. Geosci. Remote Sensing, vol. 34, no. 5, pp. 1123-1136, Sep. 1996. [5] Y.-P. Li, M.-D. Xing, and Z. Bao, “A new method of motion error extraction from radar raw data for SAR motion compensation,” IEEE CIE Int. Conf. Radar, Shanghai, China, Oct. 2006. [6] M.-D. Xing, X.-W. Jiang, R.-B. Wu, F. Zhou, and Z. Bao, “Motion compensation for UAV SAR based on raw radar data,” IEEE Trans. Geosci. Remote Sensing, vol. 47, no. 8, pp. 2870-2883, Aug. 2009. [7] L. Zhang, G.-Y. Wang, Z.-J. Qiao, and H.-X. Wang, “Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging,” IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, vol. 10, no. 1, pp. 184-193, Jan. 2017. [8] P. Prats, K. A. C. Macedo, A. Reigber, R. Scheiber, and J. J. Mallorqui, “Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR,” IEEE Geosci. Remote Sensing Lett., vol. 4, no. 3, pp. 349-353, Jul. 2007. [9] K. A. C. Macedo and R. Scheiber, “Precise topography- and aperture-dependent motion compensation for airborne SAR,” IEEE Geosci. Remote Sensing Lett., vol. 2, no. 2, pp. 172-176, Apr. 2005. [10] S. Perna, V. Zamparelli, A. Pauciullo, and G. Fornaro, “Azimuth-to-frequency map- ping in airborne SAR data corrupted by uncompensated motion errors,” IEEE Geosci. Remote Sensing Lett., vol. 10, no. 6, pp. 1493-1497, Nov. 2013. [11] X. Zheng, W. Yu, and Z. Li, “A novel algorithm for wide beam SAR motion compen- sation based on frequency division,” IEEE Int. Geosci. Remote Sensing Symp., Denver, Colorado, USA, pp. 3143-3146, Aug. 2006. [12] Y.-L. Li, X.-D. Liang, C.-B. Ding, L.-J. Zhou, and Q. Ding, “Improvements to the frequency division-based subaperture algorithm for motion compensation in wide-beam SAR,” IEEE Geosci. Remote Sensing Lett., vol. 10, no. 5, pp. 1219-1223, Sep. 2013. [13] Y.-C. Chen, G. Li, Q. Zhang, Q.-J. Zhang, and X.-G. Xia, “Motion compensation for airborne SAR via parametric sparse representation,” IEEE Trans. Geosci. Remote Sensing, vol. 55, no. 1, pp. 551-562, Jan. 2017. [14] Ian G. Cumming and Frank H. Wong, “Digital processing of synthetic aperture radar data,” Artech House, US, 2005. [15] F.-F. Gu, Q. Zhang, L. Chi, Y.-A. Chen, and S. Li, “A novel motion compensating method for MIMO-SAR imaging based on compressed sensing,” IEEE Sensors J., vol. 15, no. 4, pp. 2157-2165, Apr. 2015. [16] G. Fornaro, “Flight path deviations in airborne SAR: Analysis and compensation,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 3, pp. 997-1009, Jul. 1999. [17] G. Fornaro, G. Franceschetti, and S. Perna, “On center-beam approximation in SAR motion compensation,” IEEE Geosci. Remote Sensing Lett., vol. 3, no. 2, pp. 276-279, Apr. 2006. [18] L. Zhang, Z. Qiao, M.-D. Xing, L. Yang, and Z. Bao, “A robust motion compensation approach for UAV SAR imagery,” IEEE Trans. Geosci. Remote Sensing, vol. 50, no. 8, pp. 3202-3218, Aug. 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67234 | - |
| dc.description.abstract | 本論文提出九種策略來補償合成孔徑雷達成像時因載具路徑偏差而造成的影像模糊。在只使用接收訊號的前提下,透過萃取分段孔徑的相位來估計相位係數,再利用兩種方法來估計路徑偏差量。本論文並考慮四種代表性的載具路徑偏移模式來比較各種策略的結果,亦考慮雜訊對各種策略的影響程度。 | zh_TW |
| dc.description.abstract | Nine different strategies are proposed to compensate the cross-track motion errors in synthetic aperture radar (SAR) imaging, based on estimating the phase coefficients of the phase history. A spline interpolation method and a subaperture reconstruction method are used to derive the phase history over the whole aperture, based on the phase coefficients previously estimated. Four different scenarios are designed to compare the performance of these nine strategies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:24:31Z (GMT). No. of bitstreams: 1 ntu-106-R04942017-1.pdf: 2877384 bytes, checksum: 13238fb19cf6e6c90d820112917b6666 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Abstract i
Table of Contents iii List of Figures v Acknowledgment vi 1 Introduction 1 2 Polynomial Representation of Phase History 5 3 Estimation of Phase Coefficients in Subapertures 9 3.1 First-Order Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Second-Order Model 10 3.3 Third-Order Model 10 4 Slow-time Profiles of Phase Coefficients 12 4.1 Interpolation Method 12 4.2 Reconstruction Method 13 5 Strategies for Cross-Track MOCO 15 5.1 Strategies I-1, II-1, III-1, R-1 and R-2 16 5.2 Strategies II-2, III-2 and R-3 17 5.3 Strategy III-3 17 6 Simulation Scenarios 19 6.1 Scenario S1: dbr/dη 0 19 6.2 Scenario S2: dar/dη /= 0, dbr/dη = 0 20 6.3 Scenario S3: dvr/dη = 0, dar/dη = 0 21 6.4 Scenario S4: dvr/dη = 0 21 6.5 Magnitude of Kinetic Parameters 22 7 Simulation Results and Discussions 23 8 Conclusion 30 Bibliography 31 | |
| dc.language.iso | en | |
| dc.subject | 合成孔徑雷達 | zh_TW |
| dc.subject | Synthetic Aperture Radar | en |
| dc.title | 合成孔徑雷達成像之數據驅動式跨軌道運動補償策略 | zh_TW |
| dc.title | Data-Driven Strategies for Cross-Track Motion
Compensation in Synthetic Aperture Radar Imaging | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 連豊力(Feng-Li Lian),魏宏宇(Hung-Yu Wei) | |
| dc.subject.keyword | 合成孔徑雷達, | zh_TW |
| dc.subject.keyword | Synthetic Aperture Radar, | en |
| dc.relation.page | 34 | |
| dc.identifier.doi | 10.6342/NTU201702776 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
