Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67222
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 高文媛(Wen-Yuan Kao) | |
dc.contributor.author | Yan-Zhi Liu | en |
dc.contributor.author | 劉彥治 | zh_TW |
dc.date.accessioned | 2021-06-17T01:24:06Z | - |
dc.date.available | 2022-08-11 | |
dc.date.copyright | 2017-08-11 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-08 | |
dc.identifier.citation | 許建昌 (1975) 臺灣的禾草,臺灣省教育會。
廖顯淳 (2014) 颱風草葉片皺褶與葉子對光環境的反應。碩士論文,國立臺灣大學,臺北市。 蔡淑華 (1975) 植物組織切片技術綱要,茂昌圖書有限公司。 Abraham, E. M., Kyriazopoulos, A. P., Parissi, Z. M., Kostopoulou, P., Karatassiou, M., Anjalanidou, K., & Katsouta, C. (2014). Growth, dry matter production, phenotypic plasticity, and nutritive value of three natural populations of Dactylis glomerata L. under various shading treatments. Agroforestry Systems, 88, 287-299. Augustynowicz, J., & Gabry`s, H. (1999). Chloroplast movements in fern leaves: correlation of movement dynamics and environmental flexibility of the species. Plant, Cell and Environment, 22, 1239-1248. Bazzaz, F. A. (1996). Plants in Changing Environments : Linking Physiological, Population, and Community Ecology. Cambridge University Press: Cambridge. Berg, R., Königer, M., Schjeide, B. M., Dikmak, G., Kohler, S., & Harris, G. C. (2006). A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement. Photosynthesis Research, 87, 303-311. Björkman, O. (1981). Responses to different quantum flux densities. In O. L. Lange, P. S. Nobel, C. B. Osmond, & H. Ziegler (Eds.), Physiological Plant Ecology I (Vol. 12A, pp. 57-107). Berlin: Springer-Verlag. Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115-155. Brugnoli, E., & Björkman, O. (1992). Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formatio. Photosynthesis Research, 32, 23-35. Cao, K.-F., & Booth, E. W. (2001). Leaf anatomical structure and photosynthetic induction for seedlings of five dipterocarp species under contrasting light conditions in a Bornean heath forest. Journal of Tropical Ecology, 17, 163-175. Chazdon, R. L., & Pearcy, R. W. (1986). Photosynthetic responses to light variation in rainforest species. I. Induction under constant and fluctuating light conditions. Oecologia, 69, 517-523. Chazdon, R. L., & Pearcy, R. W. (1991). The importance of sunflecks for forest understory plants. BioScience, 41, 760-766. Chazdon, R. L., Williams, K., & Field, C. B. (1988). Interactions between crown structure and light environment in five rain forest piper species. American Journal of Botany, 75, 1459-1471. Chen, C.-H., Lin, C.-Y., & Kuoh, C.-S. (2014). Grass Flora of Taiwan (2 of 3): Panicoideae, Paniceae. Endemic Species Research Institute. Chichi, Taiwan. Chen, J.-W., Yang, Z.-Q., Zhou, P., Hai, M.-R., Tang, T.-X., Liang, Y.-L., & An, T.-X. (2012). Biomass accumulation and partitioning, photosynthesis, and photosynthetic induction in field-grown maize (Zea mays L.) under low- and high-nitrogen conditions. Acta Physiologiae Plantarum, 35, 95-105. Craine, J. M., & Reich, P. B. (2005). Leaf-level light compensation points in shade-tolerant woody seedlings. New Phytologist, 166, 710-713. DeBlasio, S. L., Luesse, D. L., & Hangarter, R. P. (2005). A plant-specific protein essential for blue-light-induced chloroplast movements. Plant Physiology, 139, 101-114. DeBlasio, S. L., Mullen, J. L., Luesse, D. R., & Hangarter, R. P. (2003). Phytochrome modulation of blue light-induced chloroplast movements in Arabidopsis. Plant Physiology, 133, 1471-1479. Donohue, K., Messiqua, D., Pyle, E. H., Heschel, M. S., & Schmitt, J. (2000). Evidence of adaptive divergence in plasticity: density- and site-dependent selection on shade-avoidance responses in Impatiens capensis. Evolution, 54, 1956-1968. Edwards, G., & Walker, D. (1983). C3,C4: Mechanisms and Cellular and Environmental Regulation of Photosynthesis. Berkeley: University of California Press. Evans, J. R. (1988). Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. Functional Plant Biology, 15, 93-106. Evans, J. R., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24, 755-767. Evans, J. R., & Seemann, J. R. (1989). The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control. In W. R. Briggs (Ed.), Photosynthesis (pp. 183-205). New York: John Wiley and Sons Ltd. Furbank, R. T., & Walker, D. A. (1985). Photosynthetic induction in C4 leaves. Planta, 163, 75-83. Hattersley, P. W. (1982). δ13 Values of C4 types in grasses. Functional Plant Biology, 9, 139-154. Hattersley, P. W., & Watson, L. (1976). C4 grasses: an anatomical criterion for distinguishing between NADP-malic enzyme species and PCK or NAD-malic enzyme species. Australian Journal of Botany, 24, 297-308. Horton, J. L., & Neufeld, H. S. (1998). Photosynthetic responses of Microstegium vimineum (Trin.) A. Camus, a shade-tolerant, C4 grass, to variable light environments. Oecologia, 114, 11-19. Hsu, C.-C., Lin, W.-C., Ksoh, C.-S., Chen, C.-H., & Liu, H.-Y. (2000). Gramineae (Poaceae). In T.-C. Huang (Ed.), Flora of Taiwan. Vol. 5. 2nd ed. (pp. 318-654). Taipei,Taiwan: Editorial Committee of the Flora of Taiwan, Taiwan University. Hutchison, B. A., & Matt, D. R. (1977). The distribution of solar radiation within a deciduous forest. Ecological Monographs, 47, 185-207. Jarillo, J. A., Gabrys, H., Capel, J., Alonso, J. M., Ecker, J. R., & Cashmore, A. R. (2001). Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature, 410, 952-954. Johnston, M., Grof, C. P. L., & Brownell, P. F. (1984). Effect of sodium nutrition on chlorophyll a/b ratios in C4 plants. Australian Journal of Plant Physiology, 11, 325-332. Königer, M., & Bollinger, N. (2012). Chloroplast movement behavior varies widely among species and does not correlate with high light stress tolerance. Planta, 236, 411-426. Königer, M., Delamaide, J. A., Marlow, E. D., & Harris, G. C. (2008). Arabidopsis thaliana leaves with altered chloroplast numbers and chloroplast movement exhibit impaired adjustments to both low and high light. Journal of Experimental Botany, 59, 2285-2297. Kadota, A., Yamada, N., Suetsugu, N., Hirose, M., Saito, C., Shoda, K., Ichikawa, S., Kagawa, T., Nakano, A., & Wada, M. (2009). Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proceedings of the National Academy of Sciences, 106, 13106-13111. Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K., & Wada, M. (2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 291, 2138-2141. Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M., & Wada, M. (2002). Chloroplast avoidance movement reduces photodamage in plants. Nature, 420, 829-832. Kirschbaum, M. U. F., & Pearcy, R. W. (1988). Gas exchange analysis of the fast phase of photosynthetic induction in Alocasia macrorrhiza. Plant Physiology, 87, 818-821. Kobza, J., & Edwards, G. E. (1987). The photosynthetic induction response in wheat leaves: net CO2 uptake, enzyme activation, and leaf metabolites. Planta, 171, 549-559. Krall, J. P., & Pearcy, R. W. (1993). Concurrent measurements of oxygen and carbon dioxide exchange during lightflecks in maize (Zea mays L.). Plant Physiology, 103, 823-828. Lambers, H., Chapin III, F. S., & Pons, T. L. (1998). Plant Physiological Ecology. New York: Springer Verlag. Lambers, H., Stuart Chapin III, F., & Pons, T. L. (2008). Plant Physiological Ecology. New York: Springer Verlag. Le Gouallec, J. L., Cornic, G., & Blanc, P. (1990). Relations between sunfleck sequences and photoinhibition of photosynthesis in a tropical rain forest understory herb. American Journal of Botany, 77, 999-1006. Leegood, R. C., & Walker, R. P. (1999). Regulation of the C4 pathway. In R. F. Sage & R. K. Monson (Eds.), C4 Plant Biology (pp. 89-313). San Diego: Academic Press. Lichtenthaler, H. K., & Babani, F. (2004). Light adaptation and senescence of the photosynthetic apparatus. changesin pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In G. C. Papageorgiou & Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis (pp. 713-736). Dordrecht: Springer Netherlands. Müller, P., Li, X., & Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558-1566. Maai, E., Shimada, S., Yamada, M., Sugiyama, T., Miyake, H., & Taniguchi, M. (2011). The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid. Journal of Experimental Botany, 62, 3213-3221. Mooney, H. A., & Gulmon, S. L. (1982). Constraints on leaf structure and function in reference to herbivory. BioScience, 32, 198-206. Morisset, P., & Boutin, C. (1984). The biosystematic importance of phenotypic plasticity. In W. F. Grant (Ed.), Plant Biosystematics (pp. 293-306): Academic Press. Pearcy, R. W. (1983). The light environment and growth of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia, 58, 19-25. Pearcy, R. W., Osteryoung, K., & Calkin, H. W. (1985). Photosynthetic responses to dynamic light environments by Hawaiian trees: time course of CO2 uptake and carbon gain during sunflecks. Plant Physiology, 79, 896-902. Pigliucci, M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture: Johns Hopkins University Press. Poorter, L., & Oberbauer, S. F. (1993). Photosynthetic induction responses of two rainforest tree species in relation to light environment. Oecologia, 96, 193-199. Powles, S., & Björkman, O. (1981). Leaf Movement in the Shade Species Oxalis oregana. II. Role in Protection against Injury by Intense Light. USA: Carnegie Institution of Washington Year Book. R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Rackham, O. (1975). Temperatures of plant communities as measured by pyrometric and other methods. In G. C. Evans, R. Bainbridge, & O. Rackham (Eds.), Liqht as an Ecological Factor (pp. 423-450). Oxford, UK: Black- well. Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytologist, 161, 341-370. Sage, R. F., & McKown, A. D. (2006). Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis? Journal of Experimental Botany, 57, 303-317. Sakai, T., Kagawa, T., Kasahara, M., Swartz, T. E., Christie, J. M., Briggs, W. R., Wada, M., & Okada, K. (2001). Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation. Proceedings of the National Academy of Sciences, 98, 6969-6974. Schmitt, J. (1997). Is photomorphogenic shade avoidance adaptive? Perspectives from population biology. Plant, Cell & Environment, 20, 826-830. Shirley, H. L. (1929). The influence of light intensity and light quality upon the growth of plants. American Journal of Botany, 16, 354-390. Sultan, S. E. (1995). Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 44, 363-383. Sultan, S. E. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542. Sultan, S. E. (2001). Phenotypic plasticity for fitness components inpolygonumspecies of contrasting ecological breadth. Ecology, 82, 328-343. Sultan, S. E. (2003). Phenotypic plasticity in plants: a case study in ecological development. Evolution & Development, 5, 25-33. Tomimatsu, H., Iio, A., Adachi, M., Saw, L. G., Fletcher, C., & Tang, Y. (2014). High CO2 concentration increases relative leaf carbon gain under dynamic light in Dipterocarpus sublamellatus seedlings in a tropical rain forest, Malaysia. Tree Physiology, 34, 944-954. Trojan, A., & Gabrys, H. (1996). Chloroplast distribution in Arabidopsis thaliana (L.) depends on light conditions during growth. Plant Physiology, 111, 419-425. Usuda, H., & Edwards, G. E. (1984). Is photosynthesis during the induction period in maize limited by the availability of intercellular carbon dioxide? Plant Science Letters, 37, 41-45. Valladares, F., Sanchez-Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94, 1103-1116. Walters, R. G. (2005). Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany, 56, 435-447. Ward, D. A., & Woolhouse, H. W. (1986). Comparative effects of light during growth on the photosynthetic properties of NADP-ME type C4 grasses from open and shaded habitats. I. Gas exchange, leaf anatomy and ultrastructure. Plant, Cell & Environment, 9, 261-270. Williams, D. G., Mack, R. N., & Black, R. A. (1995). Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecology, 76, 1569-1580. Williams, W. E., Gorton, H. L., & Witiak, S. M. (2003). Chloroplast movements in the field. Plant, Cell & Environment, 26, 2005-2014. Winter, K., Schmitt, M. R., & Edwards, G. E. (1982). Microstegium vimineum, a shade adapted C4 grass. Plant Science Letters, 24, 311-318. Wintermans, J. F. G. M., & De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et biophysica acta, 109, 448-453. Yamada, M., Kawasaki, M., Sugiyama, T., Miyake, H., & Taniguchi, M. (2009). Differential positioning of C4 mesophyll and bundle sheath chloroplasts: aggregative movement of C4 mesophyll chloroplasts in response to environmental stresses. Plant and Cell Physiology, 50, 1736-1749. Young, D. R., & Smith, W. K. (1979). Influence of sunflecks on the temperature and water relations of two subalpine understory congeners. Oecologia, 43, 195-205. Zurzycki, J. (1980). Blue light-induced intracellular movements. In H. Senger (Ed.), The Blue Light Syndrome (pp. 50-68). Berlin, Heidelberg: Springer Berlin Heidelberg. Zurzycki, J. (1995). Chloroplast arrangement as a factor in photosynthesis. Acta Societatis Botanicorum Poloniae, 24, 27–63 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67222 | - |
dc.description.abstract | 颱風草能生長在森林邊緣與林下,因此比一般C4具有較廣的光環境棲地。先前研究指出颱風草具有表型可塑性,且其葉片有葉綠體移動現象,使其可以在不同的光環境下生長。本研究比較狗尾草屬的C4植物,分別是小米 (生長在開闊地)、颱風草 (生長在森林邊緣與林下) 與皺葉狗尾草 (主要生長在林下) 在不同光度環境下生長植株其葉片形質、光合作用表現與生長反應,然後計算其表型可塑性指數,以檢驗颱風草是否有最高的表型可塑性:並探討能在林下生長的颱風草與皺葉狗尾草是否比小米有較明顯的葉綠體移動反應與較快的光合作用反應能力。
結果顯示小米葉片面積隨生長光度降低而減小,颱風草和皺葉狗尾草則呈現相反的反應 (兩者反應程度相似)。隨生長光度降低,三者葉片的單位乾重葉面積均增加、葉肉組織均變薄、葉綠素a / b比降低 (小米的反應最大)、單位乾重之葉綠素含量增加 (皺葉狗尾草的反應最大)、暗呼吸速率及光補償點均下降、地上部 / 地下部生物量的比值增加;計算後發現小米的表型可塑性指數 (RDPI值) 最高,而颱風草最低。比較三物種,在全光環境下,小米有最大的葉片面積及最高的光飽和淨光合作用速率和光飽和點,而在中光和低光環境下,颱風草有最大的葉片面積,在低光環境下,皺葉狗尾草有最低的暗呼吸作用速率與光補償點。 藍光可以誘導三物種的葉綠體移動呈現聚集或避光反應,三物種在全光環境下生長時,照射弱光或環境照光度低時有顯著的葉綠體聚集反應;而颱風草與皺葉狗尾草在低光環境生長時,在高照光度時其葉綠體有明顯的避光反應,推測當斑光發生時,該反應可使葉片避免吸收過多的光造成光傷害。三物種光合作用速率與氣孔導度受光誘導的反應皆相當快速;與其他兩物種相比,生長在遮陰環境下的颱風草達到最高光合作用速率的時間較短,也許可以較有效率地利用斑光。 | zh_TW |
dc.description.abstract | C4 plants are mainly distributed in habitats with high light and high temperature. Setaria palmifolia, a C4 plant, can grow in a broad range of light environments, such as in forest edge and understory. A previous study implied that phenotypic plasticity and chloroplast movement response confer S. palmifolia ability to grow under varied light evironments. Leaf characters, photosynthetic performances and growth of three C4 plants, S. italica (distributed in open habitat), S. palmifolia (in forest edge and understory) and S. plicata (mainly in understory), grown under different light regimes were measured in this study. The relative distance plasticity index (RDPI) was calculated for the comparison of phenotypic plasticity among the studied species. Chloroplast movements and photosynthetic induction response were also investigated to evaluate whether shade-tolerant S. palmifolia and S. plicata have more apparent chloroplast movements and better efficiency in utilizing sunflecks than S. italica.
Results showed that leaf size of S. italica decreased but that of S. palmifolia and S. plicata increased (both with similar magnitude of response) as growth light level decreased. As growth light level decreased, the three species showed reduction in mesophyll thickness, chlorophyll a / b ratio (S. italica the highest response), respiration rate and light compensation point, while increased in specific leaf area, chlorophyll content per unit mass (S. plicata the highest response) and aboveground to belowground biomass ratio. Overall, S. italica had the highest RDPI, and S. palmifolia the lowest. In comparison of the three species, S. italica had the largest leaf size, photosynthetic capacity and light saturation point under full-sun regime while S. palmifolia had the largest leaf size under intermediate and low light regime. Under low light regime, S. plicata had the lowest respiration rate and light compensation point. Three species had blue light induced chloroplast movements (accumulation and avoidance response). Apparent chloroplast movements (accumulation response) were found in leaves of full-sun grown plants. S. palmifolia and S. plicata showed significant avoidance response when they were grown under low light regime. The avoidance response of chloroplast might reduce the risk of photodamage caused by excessive light (e.g., sunflecks) when S.palmifolia and S. plicata growing in forest understory. Three Setaria species had rapid photosynthetic and stomatal responses in response to changes in light intensity, from 20 to 1600 μmol m-2 s-1. When grown under shaded environment, S. palmifolia achieved light-saturated photosynthetic rates in relatively shorter time than the other two specise. Accordingly, S. palmifolia might have better efficiency in utilizing sunflecks than the other two species. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:24:06Z (GMT). No. of bitstreams: 1 ntu-106-R03b44009-1.pdf: 6971151 bytes, checksum: 81ffe10fbac16b526608ea9331e5c122 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 摘要 1
Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 一、前言 1 二、材料與方法 6 (一) 實驗材料來源與種植方式 6 1. 材料來源 6 2. 種植方式 6 (二) 葉片形質與生長比較 9 1. 植株葉片形態與解剖構造 9 2. 植物葉片生化特徵與光合作用氣體交換 10 3. 植株的生物量分配 13 4. 表型可塑性指數 13 (三) 葉綠體移動觀察和測量 14 1. 不同光度之藍光誘導下葉片穿透度變化 14 2. 不同照射光度下葉綠體移動情形 16 3. 自然光下葉綠體移動之情形 17 (四) 光合作用動態反應測量 17 (五) 統計分析 18 三、結果 20 (一) 葉片形質及生長比較 20 1. 實驗一 (兩種光度處理) 20 2. 實驗二 (三種光度處理) 34 3. 實驗三 (三種光度處理) 53 (二) 葉綠體移動觀察 58 1. 不同光度之藍光誘導下葉片穿透度變化 58 2. 不同照射光度下葉綠體移動情形 59 3. 自然光下葉綠體移動之情形 60 (三) 光合作用動態反應 68 四、討論 72 (一) 葉片形質及生長比較 72 (二) 葉綠體移動 75 (三) 光合作用動態反應 76 五、結論 79 六、參考文獻 80 七、附錄 89 | |
dc.language.iso | zh-TW | |
dc.title | 三種狗尾草屬植物在不同光環境表型可塑性的比較 | zh_TW |
dc.title | Phenotypic plasticity of three Setaria species grown under different light environments | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭耀綸(Yau-Lun Kuo),張育森(Yu-Sen Chang),黃玲瓏(Ling-Long Kuo-Huang) | |
dc.subject.keyword | 表型可塑性,葉綠體移動,斑光,狗尾草屬,C4植物,光環境, | zh_TW |
dc.subject.keyword | Phenotypic plasticity,Chloroplast movement,Sunfleck,Setaria,C4,Light environment, | en |
dc.relation.page | 99 | |
dc.identifier.doi | 10.6342/NTU201702804 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-09 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
Appears in Collections: | 生態學與演化生物學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 6.81 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.