Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游佳欣
dc.contributor.authorKuan-Han Wuen
dc.contributor.author吳冠翰zh_TW
dc.date.accessioned2021-06-17T01:23:39Z-
dc.date.available2017-08-20
dc.date.copyright2017-08-20
dc.date.issued2017
dc.date.submitted2017-08-09
dc.identifier.citation1. Valencia PM, Farokhzad OC, Karnik R, Langer R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012;7(10):623-9.
2. Dang T-D, Cheney MA, Qian S, Joo SW, Min B-K. Reactivity of poly(dimethylsiloxane) toward acidic permanganate. Journal of Industrial and Engineering Chemistry. 2013;19(6):1770-3.
3. Halldorsson S, Lucumi E, Gomez-Sjoberg R, Fleming RM. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 2015;63:218-31.
4. Slaughter G, Stevens B. A cost-effective two-step method for enhancing the hydrophilicity of PDMS surfaces. BioChip Journal. 2014;8(1):28-34.
5. Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, LeDuc PR, et al. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip. 2011;11(8):1550-5.
6. Xia YaW, G. M. . Soft lithography. Annu Rev Mater Sci. 1998;28:153-84.
7. Choban E. Microfluidic fuel cell based on laminar flow. Journal of Power Sources. 2004;128(1):54-60.
8. Sun MH, Velve Casquillas G, Guo SS, Shi J, Ji H, Ouyang Q, et al. Characterization of microfluidic fuel cell based on multiple laminar flow. Microelectronic Engineering. 2007;84(5-8):1182-5.
9. Li Z, Venkataraman A, Rosenbaum MA, Angenent LT. A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity. ChemSusChem. 2012;5(6):1119-23.
10. Velve-Casquillas G, Le Berre M, Piel M, Tran PT. Microfluidic tools for cell biological research. Nano Today. 2010;5(1):28-47.
11. Khademhosseini A, et al. Microscale technologies for tissue engineering and biology. PNAS. 2005;103(8):2480-7.
12. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol. 2015;35:118-26.
13. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165-74.
14. Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13(8):1489-500.
15. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc. 2012;7(7):1247-59.
16. Altmann B, Lochner A, Swain M, Kohal RJ, Giselbrecht S, Gottwald E, et al. Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions. Biomaterials. 2014;35(10):3208-19.
17. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci U S A. 2014;111(7):2447-52.
18. Bischel LL, Young EW, Mader BR, Beebe DJ. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials. 2013;34(5):1471-7.
19. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, et al. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab Chip. 2012;12(20):3861-5.
20. Mahadik BP ea. Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv Healthc Mater. 2014;3:449-58.
21. Abdellatef SA, Ohi A, Nabatame T, Taniguchi A. The effect of physical and chemical cues on hepatocellular function and morphology. Int J Mol Sci. 2014;15(3):4299-317.
22. Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A. Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev. 2013;113(5):3297-328.
23. Discher DE, Mooney, D. J., Zandstra, P.W. Growth Factors, Matrices, and Forces Combine and Control Stem Cells. Science. 2009;354(5935):1673-7.
24. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677-89.
25. Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK, Lam RH, et al. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano. 2012;6(5):4094-103.
26. Witkowska-Zimny M, et al. Effect of substrate stiffness on differentiation of umbilical cord stem cells. Acta Biochim Pol. 2012;59(2):261-4.
27. Marino A, Ciofani G, Filippeschi C, Pellegrino M, Pellegrini M, Orsini P, et al. Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells. ACS Appl Mater Interfaces. 2013;5(24):13012-21.
28. Szymanski JM, Feinberg AW. Fabrication of freestanding alginate microfibers and microstructures for tissue engineering applications. Biofabrication. 2014;6(2):024104.
29. Jaeger AA, Das CK, Morgan NY, Pursley RH, McQueen PG, Hall MD, et al. Microfabricated polymeric vessel mimetics for 3-D cancer cell culture. Biomaterials. 2013;34(33):8301-13.
30. Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH, Kim DH, et al. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev. 2013;65(4):536-58.
31. Kumar VA, Martinez AW, Caves JM, Naik N, Haller CA, Chaikof EL. Microablation of collagen-based substrates for soft tissue engineering. Biomed Mater. 2014;9(1):011002.
32. Gao L, McBeath R, Chen CS. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells. 2010;28(3):564-72.
33. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872-7.
34. Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion & Migration. 2014;4(3):377-81.
35. O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today. 2011;14(3):88-95.
36. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474-91.
37. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485-502.
38. Stevens MMaG, J. H. Exploring and Engineering the Cell Surface Interface. Science. 2005;310(5751):1135-8.
39. Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010;43(1):55-62.
40. Peyton SR, Kalcioglu ZI, Cohen JC, Runkle AP, Van Vliet KJ, Lauffenburger DA, et al. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol Bioeng. 2011;108(5):1181-93.
41. Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13(10):979-87.
42. Brauker JH, et al. Neovascularization of synthetic membranes directed by membrane microarchitecture. Journal of Biomedical Materials Research. 1995;29:1517-24.
43. SHOUFENG Y, et al. The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Eng 2001;7(6):679-89.
44. Whang Kea. Engineering Bone Regeneration with Bioabsorbable Scaffolds with Novel Microarchitecture. Tissue Eng. 1999;5(1):35-51.
45. Zimmermann DR, Dours-Zimmermann MT. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol. 2008;130(4):635-53.
46. Hulmes DJ. Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol. 2002;137(1-2):2-10.
47. Kielty CM, Sherratt, M. J. and Shuttleworth, C. A. Elastic fibres. Journal of Cell Science. 2002;115(14):2817-28.
48. Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol. 2003;200(4):423-8.
49. Kidoaki S, Matsuda T. Microelastic gradient gelatinous gels to induce cellular mechanotaxis. J Biotechnol. 2008;133(2):225-30.
50. Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science. 2009;324(5923):59-63.
51. Kloxin AM, Benton JA, Anseth KS. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials. 2010;31(1):1-8.
52. Kutejova E, Briscoe J, Kicheva A. Temporal dynamics of patterning by morphogen gradients. Curr Opin Genet Dev. 2009;19(4):315-22.
53. Wang F. The signaling mechanisms underlying cell polarity and chemotaxis. Cold Spring Harb Perspect Biol. 2009;1(4):a002980.
54. Gorgieva SaK, V. Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives. Biomaterials Applications for Nanomedicine. 2011.
55. DeLong SA, Moon JJ, West JL. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials. 2005;26(16):3227-34.
56. He J, Du Y, Villa-Uribe JL, Hwang C, Li D, Khademhosseini A. Rapid generation of biologically relevant hydrogels containing long-range chemical gradients. Adv Funct Mater. 2010;20(1):131-7.
57. Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release. 2009;134(2):81-90.
58. Rose P.J. ea. Encyclopedia of polymer science and engineering. Wiley. 1989:488-513.
59. Hoque ME, et al. Gelatin Based Scaffolds For Tissue Engineering- A review. Polymers Research Journal. 2015;9(1):15-32.
60. Torricelli P, Gioffre M, Fiorani A, Panzavolta S, Gualandi C, Fini M, et al. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: modulation of mechanical properties and chondrocyte response as a function of composition. Mater Sci Eng C Mater Biol Appl. 2014;36:130-8.
61. Kharaziha M, Nikkhah M, Shin SR, Annabi N, Masoumi N, Gaharwar AK, et al. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials. 2013;34(27):6355-66.
62. Beigi MH, Ghasemi-Mobarakeh L, Prabhakaran MP, Karbalaie K, Azadeh H, Ramakrishna S, et al. In vivo integration of poly(epsilon-caprolactone)/gelatin nanofibrous nerve guide seeded with teeth derived stem cells for peripheral nerve regeneration. J Biomed Mater Res A. 2014;102(12):4554-67.
63. Wang N, Burugapalli K, Wijesuriya S, Far MY, Song W, Moussy F, et al. Electrospun polyurethane-core and gelatin-shell coaxial fibre coatings for miniature implantable biosensors. Biofabrication. 2014;6(1):015002.
64. Linh N.T.B. ea. Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects. J Biomed Mater Res A. 2013;101(8):2412-23.
65. Lee SB, Kim YH, Chong MS, Hong SH, Lee YM. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26(14):1961-8.
66. Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818-27.
67. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279-95.
68. Alexander DDAaRW. Advances in Regenerative Medicine: High-density Platelet-rich Plasma and Stem Cell Prolotherapy For Musculoskeletal Pain. Practical Pain Management. 2011;11(8):49-63.
69. Feisst V, Meidinger S, Locke MB. From bench to bedside: use of human adipose-derived stem cells. Stem Cells Cloning. 2015;8:149-62.
70. Stromps JP, Paul NE, Rath B, Nourbakhsh M, Bernhagen J, Pallua N. Chondrogenic differentiation of human adipose-derived stem cells: a new path in articular cartilage defect management? Biomed Res Int. 2014;2014:740926.
71. Xie X, Wang Y, Zhao C, Guo S, Liu S, Jia W, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33(29):7008-18.
72. Li Q, Tang J, Wang R, Bei C, Xin L, Zeng Y, et al. Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. Artif Cells Blood Substit Immobil Biotechnol. 2011;39(1):31-8.
73. Hiraki Y. ea. Differentiation of chondrogenic precursor cells during the regeneration of articular cartilage. Osteoarthritis and Cartilage. 2001;9:102-8.
74. Merceron C, Vinatier C, Portron S, Masson M, Amiaud J, Guigand L, et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol. 2010;298(2):C355-64.
75. Weijers EM, Van Den Broek LJ, Waaijman T, Van Hinsbergh VW, Gibbs S, Koolwijk P. The influence of hypoxia and fibrinogen variants on the expansion and differentiation of adipose tissue-derived mesenchymal stem cells. Tissue Eng Part A. 2011;17(21-22):2675-85.
76. Estes BT, Diekman BO, Gimble JM, Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc. 2010;5(7):1294-311.
77. Angele P, Muller R, Schumann D, Englert C, Zellner J, Johnstone B, et al. Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A. 2009;91(2):416-27.
78. Garcia J, Mennan C, McCarthy HS, Roberts S, Richardson JB, Wright KT. Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat. Stem Cells Int. 2016;2016:6969726.
79. Oh SH, et al. Investigation of Pore Size Effect on Chondrogenic Differentiation of Adipose Stem Cells Using a Pore Size Gradient Scaffold. Biomacromolecules. 2010;11:1948-55.
80. Reppel L, Schiavi J, Charif N, Leger L, Yu H, Pinzano A, et al. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering. Stem Cell Res Ther. 2015;6:260.
81. Singh P, Schwarzbauer JE. Fibronectin and stem cell differentiation - lessons from chondrogenesis. J Cell Sci. 2012;125(Pt 16):3703-12.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67210-
dc.description.abstract人體中的軟骨組織在遭遇到創傷導致受損時並不具有自瘉的能力,所以有許多關於自體軟骨細胞移植的研究產生。但是,這樣的移植需要相當高的細胞數量,而軟骨細胞在一般細胞培養過程中容易喪失其分化的表現型,因此,以幹細胞進行分化並生成大量軟骨細胞及組織便成為一個可能的解答。在本實驗中,我們選用人類脂肪幹細胞(hASC)做為細胞模型。
在組織工程中,3D多孔性材料是一個常用的模版,有許多研究在談討細胞最佳的分化條件。在這些議題中,孔徑大小時常被提出來討論,因為在傳統研究中生醫材料的製備多採用凍乾或者是顆粒浸出的方式,因此製備出的多孔性生醫材料在孔徑大小並不是那麼的精確。在這份研究中,我們利用微流體技術製作出四種不同孔洞大小的均一圓球狀之三維明膠泡泡支架以模仿細胞在生物體內的生長環境,並比較在不同孔洞大小對於細胞在生長及分化上的影響。
在過去的研究中,曾經有探討過此材料對於hASC硬骨及脂肪分化的影響,因此這份研究專注在孔徑大小對於軟骨分化表現的影響,首先我們利用Live/Dead染色來判斷這些孔徑大小皆能讓細胞有良好的存活率,接著觀察細胞的型態、生長速率並比較孔徑大小對於細胞生長的影響,再對細胞進行分化並以螢光免疫染色和基因表現的定量來比較及觀察孔徑大小對於細胞分化的影響。結果顯示,在最大孔徑,也就是在孔洞直徑為200μm下有著最好的分化效果,並由分化的細胞型態來分析,可能是由於hASC在軟骨分化的型態為聚集成球狀,而大孔徑給予細胞足夠的空隙來聚集進而分化成軟骨細胞,未來將對於這樣的推測進行驗證。
zh_TW
dc.description.abstractIn human bodies, cartilage tissue lacks in the ability to heal when encounters trauma or lesion. This inability of self-repair motivates all sorts of study among autologous chondrocyte transplantation. However, the difficulty of high chondrocytes concentration is hard to be overcome due to the loss of differentiated phenotype of chondrocytes during cell culture. The use of stem cells to differentiate into chondrocytes has been a possible solution to provides large number of differentiated chondrocytes. In this study, human adipose-derived stem cells (hASC) is chosen as the model to further differentiate into chondrocytes. In tissue engineering, 3D porous scaffolds are frequently used as the substrate due to its similarity with microenvironments in organisms. Studies about the influence of porous biomaterials toward cell behavior were made to discuss the best condition for stem cell differentiation. Among these topics, pore size is a factor which is commonly discussed. In traditional studies, the preparation of porous biomaterials was either by freeze-drying or particle leaching, which leads to non-uniformity in pore size. In our study, we fabricate four gelatin microbubble scaffolds with different pore size but is uniform and spherical in pores by microfluidic techniques. Then, we compare the influence of pore size toward cell growth and differentiation. In a previous study, adipogenesis and osteogenesis of hASC in this scaffold had been studied. Therefore, we focus on the influence of pore size toward chondrogenesis in this study. Live/Dead was used to confirm the high cell viability of hASC in our scaffolds. Then, cell morphology and proliferation was observed. Finally, chondrogenesis was induced to hASC. Immunofluorescence staining and qPCR was performed to investigate the influence of pore size toward chondrogenic differentiation. According to the experimental results, the largest pore size, which is 200 μm in diameter shows the best chondrogenesis result. This result is possibly due to the aggregation during chondrogenesis. The vacancy in large pore size provides sufficient space for hASC to aggregate. Our future work will focus on the confirmation of this speculation and myogenesis in the scaffolds.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:23:39Z (GMT). No. of bitstreams: 1
ntu-106-R04524062-1.pdf: 4475843 bytes, checksum: e544691e31488ea2ee77536220049004 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Microfluidic technology 1
1.1.1 Introduction of microfluidic technology 1
1.1.2 Application of microfluidic in tissue engineering 3
1.2 Scaffolds 4
1.3 Physical and chemical cues 5
1.3.1 Physical cues 5
1.3.2 Chemical cues 8
1.4 Gelatin 10
1.5 Human adipose-derived stem cells (hASCs) 12
1.5.1 hASC 12
1.5.2 Chondrogenic differentiation 13
1.6 Motive and Aims 15
1.7 Research framework 15
Chapter 2 Material and Methods 17
2.1 Materials 17
2.2 Equipment 19
2.3 Solution Formula 21
2.3.1 Phosphate Buffered Saline Solution (PBS) 21
2.3.2 DMEM/F-12 Culture Medium 21
2.3.3 DMEM-High Glucose Culture Medium (DMEM-HG) 21
2.3.4 Chondrogenic Differentiation Medium 21
2.3.5 Phosphate Buffered Saline Solution with Tween 20 (PBST) 22
2.4 Method 22
2.4.1 Scaffolds fabrication 22
2.4.2 2D control preparation 23
2.4.3 Scaffold properties 23
2.4.4 hASC culture and seeding 24
2.4.5 Live/Dead assay 25
2.4.6 MTT assay 26
2.4.7 Nucleus and F-actin labeling 26
2.4.8 Immunofluorescence staining 27
2.4.9 Dimethylmethylene Blue (DMMB) assay 27
2.4.10 RNA Extraction 28
2.4.11 Reverse Transcription – Polymerase Chain Reaction (RT-PCR) 28
2.4.12 Real time Polymerase Chain Reaction (qPCR) 29
2.4.13 Statistical Analysis 30
Chapter 3 Results and Discussion 33
3.1 Scaffolds 33
3.2 Mechanical property 33
3.3 Cytotoxicity 34
3.4 Proliferation 35
3.5 hASC morphology 35
3.6 Chondrogenic differentiation 36
3.7 Immunofluorescence staining 37
3.8 Glycosaminoglycans (GAGs) quantification 38
3.9 Gene expression 39
CONCLUSION 55
FUTURE PERSPECTIVE 56
REFERENCE 57
APPENDICES 64
dc.language.isoen
dc.subject脂肪幹細胞zh_TW
dc.subject微流體zh_TW
dc.subject軟骨分化zh_TW
dc.subject孔徑大小zh_TW
dc.subjecthASCen
dc.subjectmicrofludicsen
dc.subjectchondrogenesisen
dc.subjectpore sizeen
dc.title利用明膠泡泡支架探討孔徑大小對於人類脂肪幹細胞軟骨分化的影響zh_TW
dc.titleThe influence of pore size toward chondrogenic differentiation of adipose-derived stem cells in gelatin microbubble scaffoldsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳賢燁,鄭乃禎,蔡偉博
dc.subject.keyword微流體,軟骨分化,孔徑大小,脂肪幹細胞,zh_TW
dc.subject.keywordmicrofludics,chondrogenesis,hASC,pore size,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201702750
dc.rights.note有償授權
dc.date.accepted2017-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved