請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67201完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫珍理 | |
| dc.contributor.author | Shao-Yu Chiu | en |
| dc.contributor.author | 邱紹育 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:23:20Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.copyright | 2017-08-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-09 | |
| dc.identifier.citation | [1] K. Bataineh and Y. Taamneh, 'Review and recent improvements of solar sorption cooling systems,' Energy and Buildings, vol. 128, no. 3, pp. 22-37, 2016 (10.1016/j.enbuild.2016.06.075).
[2] J. N. Esbrí, V. Berbegall, G. Verdu, R. Cabello, and R. Llopis, 'A low data requirement model of a variable-speed vapour compression refrigeration system based on neural networks,' International Journal of Refrigeration, vol. 30, no. 8, pp. 1452-1459, 2007 (10.1016/j.ijrefrig.2007.03.007). [3] I. Sarbu and C. Sebarchievici, 'General review of solar-powered closed sorption refrigeration systems,' Energy Conversion and Management, vol. 105, no. 9, pp. 403-422, 2015 (10.1016/j.enconman.2015.07.084). [4] A. O. Dieng and R. Z. Wang, 'Literature review on solar adsorption technologies for ice-making and air-conditioning purposes and recent developments in solar technology,' Renewable and Sustainable Energy Reviews, vol. 5, no. 4, pp. 313-342, 2001 (10.1016/S1364-0321(01)00004-1). [5] A. Elsayed, R. K. Aldadah, S. Mahmoud, B. Shi, A. Rezk, and K. Rahbar, 'Adsorption low temperature cooling using activated carbon / ethanol working pairs,' presented at the Conference on Applied Energy, Pretoria, South Africa, July 1-4, 2013, 2013. [6] G. W. Frey and D. M. Linke, 'Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way,' Energy Policy, vol. 30, no. 14, pp. 1261-1265, 2002 (10.1016/S0301-4215(02)00086-1). [7] O. Afshar, R. Saidur, M. Hasanuzzaman, and M. Jameel, 'A review of thermodynamics and heat transfer in solar refrigeration system,' Renewable and Sustainable Energy Reviews, vol. 16, no. 8, pp. 5639-5648, 2012 (10.1016/j.rser.2012.05.016) [8] H. M. Henning, 'Solar assisted air conditioning of buildings – an overview,' Applied Thermal Engineering, vol. 27, no. 10, pp. 1734-1749, 2007 (10.1016/j.applthermaleng.2006.07.021). [9] D. Mulvaney, 'Solar's green dilemma,' IEEE Spectrum, vol. 51, no. 9, pp. 30-33, 2014 (10.1109/MSPEC.2014.6882984). [10] F. Asdrubali and S. Grignaffini, 'Experimental evaluation of the performances of a H2O–LiBr absorption refrigerator under different service conditions,' International Journal of Refrigeration, vol. 28, no. 4, pp. 489-497, 2005 (10.1016/j.ijrefrig.2004.11.006). [11] F. Assilzadeh, S. A. Kalogirou, Y. Ali, and K. Sopian, 'Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors,' Renewable Energy, vol. 30, no. 8, pp. 1143-1159, 2005 (10.1016/j.renene.2004.09.017). [12] E. E. Anyanwu, 'Review of solid adsorption solar refrigerator I: an overview of the refrigeration cycle,' 44, vol. 2, pp. 301-312, 2003 (10.1016/S0196-8904(02)00038-9). [13] T. Otanicar, R. A. Taylor, and P. E. Phelan, 'Prospects for solar cooling – an economic and environmental assessment,' Solar Energy, vol. 86, no. 5, pp. 1287-1299, 2012 (10.1016/j.solener.2012.01.020). [14] P. Pinel, C. A. Cruickshank, I. B. Morrison, and A. Wills, 'A review of available methods for seasonal storage of solar thermal energy in residential applications,' Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3341-3359, 2011 (10.1016/j.rser.2011.04.013). [15] X. Zhang, J. Shen, Y. Lu, W. He, P. Xu, X. Zhao, Z. Qiu, Z. Zhu, J. Zhou, and X. Dong, 'Active solar thermal facades (ASTFs): from concept, application to research questions,' Renewable and Sustainable Energy Reviews, vol. 50, no. 3, pp. 32-63, 2015 (10.1016/j.rser.2015.04.108). [16] B. Choudhury, P. K. Chatterjee, and J. P. Sarkar, 'Review paper on solar-powered air-conditioning through adsorption route,' Renewable and Sustainable Energy Reviews, vol. 14, no. 8, pp. 2189-2195, 2010 (10.1016/j.rser.2010.03.025). [17] A. Sur and R.K.Das, 'Review on solar adsorption refrigeration cycle,' International Journal of Mechanical Engineering and Technology, vol. 1, no. 1, 2010 (10.1016/S0196-8904(02)00038-9). [18] M. A. Alghoul, M. Y. Sulaiman, B. Z. Azmi, and M. A. Wahab, 'Advances on multi-purpose solar adsorption systems for domestic refrigeration and water heating,' Applied Thermal Engineering, vol. 27, no. 5, pp. 813-822, 2007 (10.1016/j.applthermaleng.2006.09.008). [19] R. E. Critoph and R. Vogel, 'Possible adsorption pairs for use in solar cooling,' International Journal of Ambient Energy, vol. 7, no. 4, pp. 183-190, 1986 (10.1080/01430750.1986.9675500). [20] R. L. Powell, 'CFC phase-out: have we met the challenge?,' Journal of Fluorine Chemistry, vol. 114, no. 2, pp. 237-250, 2002 (10.1016/S0022-1139(02)00030-1). [21] R. E. Critoph, 'Performance limitations of adsorption cycles for solar cooling,' Solar Energy, vol. 41, no. 1, pp. 21-31, 1988 (10.1016/0038-092X(88)90111-9). [22] H. Jing and R. H. B. Exell, 'Adsorptive properties of activated charcoal/methanol combinations,' Renewable Energy, vol. 3, no. 6, pp. 567-575, 1993 (10.1016/0960-1481(93)90062-L). [23] I. I. Elsharkawy, B. B. Saha, S. Koyama, J. He, K. C. Ng, and C. Yap, 'Experimental investigation on activated carbon–ethanol pair for solar powered adsorption cooling applications,' International Journal of Refrigeration, vol. 31, no. 8, pp. 1407-1413, 2008 (10.1016/j.ijrefrig.2008.03.012). [24] I. I. Elsharkawy, K. Kuwahara, B. B. Saha, S. Koyama, and K. C. Ng, 'Experimental investigation of activated carbon fibers/ethanol pairs for adsorption cooling system application,' Applied Thermal Engineering, vol. 26, no. 8, pp. 859-865, 2006 (10.1016/j.applthermaleng.2005.10.010). [25] N. A. A. Qasem and M. A. I. Elshaarawi, 'Improving ice productivity and performance for an activated carbon/methanol solar adsorption ice-maker,' Solar Energy, vol. 98, no. 3, pp. 523-542, 2013 (10.1016/j.solener.2013.10.018). [26] E. J. Hu, 'A study of thermal decomposition of methanol in solar powered adsorption refrigeration systems,' Solar Energy, vol. 62, no. 5, pp. 325-329, 1998 (10.1016/S0038-092X(98)00012-7). [27] H. Demir, M. Mobedi, and S. Ülkü, 'A review on adsorption heat pump: problems and solutions,' Renewable and Sustainable Energy Reviews, vol. 12, no. 9, pp. 2381-2403, 2008 (10.1016/j.rser.2007.06.005). [28] M. Li and R. Z. Wang, 'Heat and mass transfer in a flat plate solar solid adsorption refrigeration ice maker,' Renewable Energy, vol. 28, no. 4, pp. 613-622, 2003 (10.1016/S0960-1481(02)00094-0). [29] X. Ji, M. Li, J. Fan, P. Zhang, B. Luo, and L. Wang, 'Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system,' Applied Energy, vol. 113, pp. 1293-1300, 2014 (10.1016/j.apenergy.2013.08.088). [30] A. Freni, F. Russo, S. Vasta, and G. Restuccia, 'An advanced solid sorption chiller using SWS1L,' Applied Thermal Engineering, vol. 27, no. 13, 2007 (10.1016/j.applthermaleng.2005.07.023). [31] R. Z. Wang, 'Adsorption refrigeration research in shanghai jiao tong university,' Renewable and Sustainable Energy Reviews, vol. 5, no. 1, pp. 1-37, 2001 (10.1016/S1364-0321(00)00009-5). [32] A. P. F. Leite and M. Daguenet, 'Performance of a new solid adsorption ice maker with solar energy regeneration,' Energy Conversion and Management, vol. 41, no. 15, pp. 1625-1647, 2000 (10.1016/j.proeng.2014.11.786). [33] E. W. Lemmon, M. L. Huber, and M. O. Mclinden, 'NIST reference fluid thermodynamic and transport peoperties-REFPROP,' 2002. [34] A. F. Robertson and D. Gross, 'An Electrical-Analog Method for Transient Heat-Flow Analysis,' Journal of Research of the National Bureau of Standards vol. 61, no. 2, pp. 105-115, 1958 [35] P. E. Bagnoli, C. Casarosa, M. Ciampi, and E. Dallago, 'Thermal Resistance Analysis by Induced Transient (TRAIT) Method for Power Electronic Devices Thermal Characterization—Part I: Fundamentals and Theory,' IEEE transactions on power electronics, vol. 13, no. 6, pp. 1208-1219, 1998 (10.1109/63.728348 ). [36] L. Technology, 'LTspice,' 2005. [37] A. Aboulmagd, A. Padovan, and R. D. C. Oliveski, 'A new model for the analysis of performance in evacuated tube solar collectors,' in Proceedings of the 3rd International High Performance Buildings, Purdue University, USA, July 14-17, 2014. [38] X. Li, Y. J. Dai, Y. Li, and R. Z. Wang, 'Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber,' Solar Energy, vol. 93, pp. 220-234, 2013 (10.1016/j.solener.2013.04.002). [39] A. Kasaeian, S. Daviran, and R. D. Azarian, 'Optical and thermal investigation of selective coatings for solar absorber tube,' International Journal of Renewable Energy Research, vol. 6, no. 1, pp. 15-20, 2016 [40] H. Yüncü, 'Thermal contact conductance of nominaly flat surfaces,' Heat and Mass Transfer, vol. 43, no. 1, pp. 1-5, 2006 (10.1007/s00231-006-0087-9). [41] D. A. Nield and A. Bejan, Convection in Porous Media, 4 ed. New York: Springer, 2013. [42] L. E. Flint and A. L. Flint, Methods of soil analysis, 1 ed. Madison, Wisconsin: Soil Science Society of America, 2002. [43] M. F. Hossain, W. Chen, and Y. Zhang, 'Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic,' Information Processing in Agriculture, vol. 2, no. 3, pp. 183-190, 2015 (10.1016/j.inpa.2015.09.001). [44] Y. A. Çengel and A. J. Ghajar, Heat and Mass Transfer Fundamentals and Applications, 4 ed. Taichung, Taiwan: Mc-Graw Hill, 2011. [45] L. Ma, Z. Lu, J. Zhang, and R. Liang, 'Thermal performance analysis of the glass evacuated tube solar collector with U-tube,' Building and Environment, vol. 45, no. 9, pp. 1959-1967, 2010 (10.1016/j.buildenv.2010.01.015). [46] S. Quoilin, M. Orosz, H. Hemond, and V. Lemort, 'Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation,' Solar Energy, vol. 85, no. 5, pp. 955-966, 2011 (10.1016/j.solener.2011.02.010). [47] A. A. Abdou and I. M. Budaiwi, 'Comparison of thermal conductivity measurements of building insulation materials under various operating temperatures,' Journal of Building Physics vol. 29, no. 2, pp. 171-184, 2016 (10.1177/1744259105056291). [48] M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang, 'Modelica buildings library,' Journal of Building Performance Simulation vol. 7, no. 4, pp. 253-270, 2013 (10.1080/19401493.2013.765506). [49] L. M. d. Socio, 'Laminar free convection around horizontal circular cylinders,' International Journal of Heat and Mass Transfer, vol. 26, no. 11, pp. 1669-1677, 1983 (10.1016/S0017-9310(83)80087-8). [50] Y. A. Çengel and M. A. Boles, Thermodynamics: an engineering approach, 5 ed. Taichung, Taiwan: Mc-Graw Hill, 2011. [51] T. Ohmura, M. Tsuboi, M. Onodera, and T. Tomimura, 'Specific heat measurement of high temperature thermal insulations by drop calorimeter method,' International Journal of Thermophysics, vol. 24, no. 2, pp. 559-575, 2002 (10.1023/A:1022936408676). [52] C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, 'National Instruments LabVIEW: a programming environment for laboratory automation and measurement,' Journal of the Association for Laboratory Automation, vol. 12, no. 1, pp. 17-24, 2007 (10.1016/j.jala.2006.07.012). [53] T. Obikawa, T. Matsumura, T. Shirakashi, and E. Usui, 'Wear characteristic of alumina coated and alumina ceramic tools,' Journal of Materials Processing Technology, vol. 63, no. 1, pp. 211-216, 1997 (10.1016/S0924-0136(96)02626-X). [54] S. D. Odeh, G. L. Morrison, and M. Behnia, 'Modelling of parabolic trough direct steam generation solar collectors,' Solar Energy, vol. 62, no. 6, pp. 395-406, 1998 (10.1016/S0038-092X(98)00031-0). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67201 | - |
| dc.description.abstract | 本研究利用氙弧燈模擬太陽光做為熱源,針對吸附式製冷系統之吸附器進行效能分析,探討影響脫附量、各元件吸熱量、理論COP及真空管熱傳效率的不同因素,包括吸附器出口之管壁溫度、初始壓力及活性碳孔隙率,並進行吸附器及真空管集熱器之熱阻分析。所使用之工作對為活性碳及甲醇,其中初始壓力有三種,分別為6.06 kPa、7.12 kPa、8.07 kPa,活性碳孔隙率有三種,分別為36.9%、21.6%、18.1%,吸附器出口之管壁溫度T3有四種,分別為80.2°C、90.2°C、100°C、110°C,共36種組合。
實驗結果顯示,不論在任何初始壓力及活性碳孔隙率下,理論COP隨吸附器出口之管壁溫度增加而上升,但若吸附器出口之管壁溫度T3過高,則理論COP增加幅度變小甚至下降,當吸附器出口之管壁溫度為100°C時,會有最高之理論COP及真空管熱傳效率。猜測這是因為真空管之環境熱損耗在吸附器出口之管壁溫度T3為110°C時變大,反而造成理論COP下降,導致吸附器出口之管壁溫度 為100°C時,會有最高之理論COP。 當活性碳孔隙率為最小 (18.1%) 時,理論COP及真空管熱傳效率較高,這是因為吸附器內之活性碳量增加,能吸附更多之甲醇,並使甲醇脫附量增加。而活性碳孔隙率下降,造成工作對熱傳導係數上升的影響並不明顯,對於工作對加熱至指定溫度所需之加熱時間影響不大,因此活性碳孔隙率下降,理論COP及真空管熱傳效率上升。 初始壓力的改變,對理論COP及真空管熱傳效率並沒有明顯影響。雖然初始壓力增加會使甲醇之脫附量增加,但也會造成節流閥出口處甲醇之飽和溫度上升、蒸發焓下降,使得製冷量幾近定值,因此初始壓力雖可得到較高之脫附量,但對於理論COP及真空管熱傳效率則幾乎沒有影響。 | zh_TW |
| dc.description.abstract | In this study, we focus on investigating the performance of the solar collector of a evacuated tube in the adsorption refrigeration system. Using methanol and activated carbon as the working pair, the desorbed mass is measured under different initial pressure so that the theoretical COP is calculated. The effects of outlet temperature of the adsorber, the initial presure, and the porosity of the activated carbon are discussed. In addition, we employ the thermal resistance analysis to determine the heat transfer associated with different compoents of the adsorber.
The experimental results show that when outlet temperature of the adsorber is 100°C, the maximal theoretical COP and collector efficiency can be reached. The theoretical COP and the collector efficiency increase as the outlet temperature of the adsorber increases. In contrast, once the outlet temperature of adsorber is increased to 110°C, heat loss of the evacuated tube increases and the required heating also augment. Hence, the theoretical COP and the collector efficiency would decrease or be the same value as the outlet temperature of the adsorber is 100°C. When the porosity of activated carbon is decreased to 18.1%, the maximal theoretical COP and the collector efficiency can be achieved. When the amount of activated carbon in the adsorber increases, more methanol can be adsorbed and the amount of desorbed methanol also increases. On the other hand, the effect of the porosity of activated carbon on the effective thermal conductivity of the working pair is negligible. As a result, the effect of the amount of desorbed methanol dominates the role the porosity plays in COP. We also find the theoretical COP and collector efficiency are nearly independent of the initial pressure. Increasing the initial pressure leads to a higher saturation temperature for methanol at the exit of the throttling valve with lower enthanlpy of vaporiation. Consequently, the cooling capacity would almost be constant and The effect of initial pressure is negligible. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:23:20Z (GMT). No. of bitstreams: 1 ntu-106-R04522109-1.pdf: 1626212 bytes, checksum: f76282f0f22a5a743381a9a833a89703 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 v 符號索引 viii 希臘符號 ix 下標 ix 表目錄 xii 圖目錄 xiii 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 吸附式製冷系統的工作對 4 1.2.2 吸附器製冷系統之吸附器 7 1.3 研究動機 8 第二章 實驗量測架構與不確定性 9 2.1 元件設計 9 2.2 吸附量計算、COP與脫附熱 10 2.2.1 Dubinin–Astakhov equation 10 2.2.2 COP 10 2.2.3 脫附熱 11 2.3 真空管式吸附器之熱阻分析 12 2.3.1熱源 13 2.3.2熱阻 14 2.3.3熱容 22 2.4 實驗架構 24 2.4.1 甲醇脫附量量測系統 24 2.4.2 太陽光輻照度量測 27 2.5 吸、脫附量量測程序及方法 29 2.5.1 系統測漏 29 2.5.2 吸附劑除氣 30 2.5.3 吸附實驗量測程序 31 2.5.4 脫附實驗量測程序 32 2.6 誤差分析 33 2.6.1 重量量測誤差 34 2.6.2 溫度量測誤差 34 2.6.3 壓力量測誤差 34 2.6.4 輻照度量測誤差 35 2.6.5 輻照熱傳量之量測誤差 36 2.6.6 工作對吸熱量之量測誤差 37 2.6.7 理論COP之量測誤差 39 2.6.8 真空管集熱器熱效率之量測誤差 39 2.6.9 活性碳孔隙率之量測誤差 40 第三章 實驗結果與討論 41 3.1 脫附量隨吸附器出口溫度之變化 41 3.2 熱阻分析之結果 43 3.2.1 吸附器出口之管壁溫度實驗值與預測值比較 43 3.2.2 各元件吸熱量之比例 43 3.3 理論COP隨出口溫度之變化 45 3.4 真空管熱傳效率隨出口溫度之變化 47 第四章 結論與建議 49 4.1 結論 49 4.2 建議 49 參考文獻 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 活性碳\甲醇 | zh_TW |
| dc.subject | 吸附式製冷系統 | zh_TW |
| dc.subject | 真空管集熱器 | zh_TW |
| dc.subject | evacuated solar collector | en |
| dc.subject | activated carbon\methanol | en |
| dc.subject | adsorption refrigeration system | en |
| dc.title | 在一含真空管集熱器之吸附式製冷系統之效能分析 | zh_TW |
| dc.title | On the Performance Analysis of a Solar Collector of Evacuated Tube for an Adsorption Refrigeration System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林怡均,黃振康 | |
| dc.subject.keyword | 吸附式製冷系統,真空管集熱器,活性碳\甲醇, | zh_TW |
| dc.subject.keyword | adsorption refrigeration system,evacuated solar collector,activated carbon\methanol, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU201702695 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
