請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67200
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慧梅 | |
dc.contributor.author | You-Ting Yan | en |
dc.contributor.author | 顏佑庭 | zh_TW |
dc.date.accessioned | 2021-06-17T01:23:18Z | - |
dc.date.available | 2027-08-08 | |
dc.date.copyright | 2017-08-20 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-09 | |
dc.identifier.citation | 1. Altshuller, A. P. and I. R. Cohen, “Application of diffusion cells to the production of known concentrations of gaseous hydrocarbons,” Analytical Chemistry, 38(6), 802-810 (1960).
2. Ao, C. H., S. C. Lee, J. Z. Yu and J. H. Xu, “Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs,” Applied Catalysis B-Environmental, 54(1), 41-50 (2004). 3. Asahi, R. and T. Morikawa, “Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis,” Chemical Physics, 339, 57–63 (2007). 4. Avila, P., A. Bahamonde, J. Blanco, B. Sanchez, A. I. Cardona and M. Romero, “Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts,” Applied Catalysis B-Environmental, 17(1-2), 75-88 (1998). 5. Bernstein, J. A., N. Alexis, H. Bacchus, I. L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith and S. M. Tarlo, 'The health effects of nonindustrial indoor air pollution.' Journal of Allergy and Clinical Immunology, 121(3), 585-591 (2008). 6. Braun, A. M. and E. Oliveros, “How to evaluate photochemical methods for water treatment,” Water Science and Technology, 35(4), 17-23 (1997). 7. Brooks, B. O., G. M. Utter, J. A. Debroy and R. D. Schimke, 'Indoor Air-Pollution - an Edifice Complex.' Journal of Toxicology-Clinical Toxicology, 29(3), 315-374 (1991). 8. Carp,O., C.L. Huisman and A. Reller, “Photoinduced reactivity of titanium dioxide,” Progress in Solid State Chemistry, 32, 33–177 (2004). 9. Cheng, M., I. E. Galbally, S.B. Molloy, P. W. Selleck, M. D. Keywood, S. J. Lawson, J. C. Powell, R. W. Gillett and E. Dunne, “Factors controlling volatile organic compounds in dwellings in Melbourne, Australia,” Indoor air, 26(2), 219-230 (2016). 10. Chang, C. P., J.N. Chen and M.C. Lu, “Heterogeneous photocatalytic oxidation of acetone for air purification by near UV-irradiated titanium dioxide,” Journal of Environmental Science and Health Part A – Toxic/Hazardous Substances & Environmental Engineering, 38, 1131-1143 (2003). 11. Chen, Q. H., H. L. Liu, Y. J. Xin and X. W. Cheng, “TiO2 nanobelts – Effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties,” Electrochimica Acta, 111, 284-291 (2013). 12. Choi, W., A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” J. Phys. Chem., 98, 13669-13679 (1994). 13. Dai, K., D. P. Li, L. H. Lu, Q. Liu, C. H. Liang, J. L. Lv, G. P. Zhu, “Plasmonic TiO2/AgBr/Ag ternary composite nanosphere with heterojunction structure for advanced visible light photocatalyst,” Applied Surface Science, 314, 864-871 (2014). 14. Deveau, P. A., F. Arsac, P. X. Thivel, C. Ferronato, F. Delpech, J. M. Chovelon, P. Kaluzny and C. Monnet, “Different methods in TiO2 photodegradation mechanism studies : Gaseous and TiO2-adsorbed phases,” Journal of Hazardous Materials, 144, 692–697 (2007). 15. Demirel, G., Ö. Özden, T. Döğeroğlu and E.O. Gaga, “Personal exposure of primary school children to BTEX, NO 2 and ozone in Eskişehir, Turkey: relationship with indoor/outdoor concentrations and risk assessment,” Sci. Total Environ., 473, 537–548 (2014). 16. Devi, L. G. and R. Kavitha, “A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system,” Applied Surface Science, 601-622 (2016). 17. Dhada, I., M. Sharma and P. K. Nagar, “Quantification and human health risk assessment of by-products of photo catalytic oxidation of ethylbenzene, xylene and toluene in indoor air of analytical laboratories,” Journal of Hazardous Materials, 316, 1-10 (2016). 18. Dibble, L. A. and G. B. Raupp, “Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams,” Environmental Science & Technology, 26(3), 492-495 (1992). 19. Dunne, E., W. Kirstine, I. E. Galbally, J. Powell, P. Selleck and S. Lawson, “A study of gaseous indoor air quality for a Melbourne home,” Clean Air & Environ. Qual., 40(3), 45-51 (2006). 20. Durme, J. V., J. Dewulf, W. Sysmans, C. Leys and H. V. Langenhove, “Abatement and degradation pathways of toluene in indoor air by positive corona discharge,” Chemosphere, 68, 1821–1829 (2007). 21. Frankcombe, T. J. and S. C. Smith, “OH-Initiated Oxidation of Toluene. 1. Quantum Chemistry Investigation of the Reaction Path,” Phys. Chem. A, 111(19), 3686–3690 (2007). 22. Fogler, H. S., “Elements of chemical reaction engineering,” 3rd Ed., Prentice Hall International, Inc., New Jersey, USA (1999). 23. Fox, M. A. and M. T. Dulay, 'Heterogeneous Photocatalysis.' Chemical Reviews, 93(1), 341-357 (1993). 24. Goodman, N. B., A. Steinemann., A. J. Wheeler., P. J.Paevere., M. Cheng. and S. K. Brown, “Volatile organic compounds within indoor environments in Australia,” Building and Environment, (2017). 25. Gratzel, M., 'Photoelectrochemical cells,' Nature, 414, 338-344 (2001). 26. Guo, H., S.C. Lee, W.M. Li and J.J. Cao, “Source characterization of BTEX in indoor microenvironments in Hong Kong,” Atmos. Environ., 37 (1), 73–82 (2003). 27. Guo, T., Z. Bai, C. Wu and Tan Zhu, “Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation,” Applied Catalysis B: Environmental, 79, 171–178 (2008). 28. Hager, S., R. Bauer and G. Kudielka, “Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide,” Chemosphere, 41(8), 1219-1225 (2000). 29. Hamidin, N., J. Yu, D.T. Phung, D. Connell and C. Chu, “Volatile aromatic hydrocarbons (VAHs) in residential indoor air in Brisbane, Australia,” Chemosphere, 92(11), 1430-1435 (2013). 30. Hashimoto, K., K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami and Y. Kera, “Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B: Environmental, 30(3-4), 429-436 (2001). 31. Hersh, J. H., P. E. Podruch, G. Rogers and B. Weisskopf., “Toluene embryopathy,” The Journal of Pediatrics, 106(6), 922-927 (1985). 32. Hines, A. L., K. G. Tushar, K. L. Sudarshan and C. W. Jr. Richand, “Indoor Air: Quality and Control,” PTR Prentice Hall Englewood Cliffs, New Jersey, USA(1993). 33. Hinwood, A. L., H. N. Berko, D. Farrar, I. E. Galbally and I. A. Weeks, “Volatile organic compounds in selected micro-environments,” Chemosphere, 63(3), 421-429 (2006). 34. Jing, D. W., L. J. Guo, L. Zhao, X. M. Zhang, H. Liu, M. T. Li, S. H. Shen, G. J. Liu, X. W. Hu, X. H. Zhang, K. Zhang, L. J. Ma, P. H. Guo, “Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration,” International Journal of Hydrogen Energy, 35(13), 7087-7097 (2010). 35. Jones, A. P., “Indoor air quality and health, “Atmospheric Environment, 33, 4535-4564 (1999). 36. Kabir, E. and K. H. Kim, “An investigation on hazardous and odorous pollutant emission during cooking activities,” Journal of Hazardous Materials, 188(1), 443-454(2011). 37. Keller, V. and F. Garin, “Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase,” Catalysis Communications, 4(8), 377-383 (2003) 38. Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” Journal of exposure analysis and environmental epidemiology, 11(3), 231-252 (2001). 39. Ku, Y., C. M. Ma and Y. S. Shen, “Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile,” Applied Catalysis B: Environmental, 34(3), 181-190 (2001). 40. Kyrklund, T., P. Kjellstrand. and K. Haglid, “Brain lipid changes in rats exposed to xylene and toluene,” toxicology, 45(2), 123-133 (1987). 41. Lee, S. C., W. M. Li and L. Y. Chan, 'Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong.' Science of the Total Environment, 279(1-3), 181-193 (2001). 42. Lee, S.C., W.M. Li and C.H. Ao, “Investigation of indoor air quality at residential homes in Hong Kong—case study,” Atmos. Environ., 36 (2), 225–237 (2002). 43. Legan, R. W., ”Ultraviolet-light takes on cpi role,” Chemical Engineering, 89(2), 95-100 (1982) 44. Lewandowski, M. and D. F. Ollis, “Extension of a two-site transient kinetic model of TiO2 deactivation during photocatalytic oxidation of aromatics: concentration variations and catalyst regeneration studies,” Applied Catalysis B-Environmental, 45(3), 223-238 (2003). 45. Li, X. Z., Li, F. B. and Xie, Y. B., “Photocatalytic oxidation using lanthanide ion-doped titanium dioxide catalysts for water and wastewater treatment.” Trends in Water Pollution Research, 31-74 (2005). 46. Liang, W. J., J. Li and Y. Q. Jin, “Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV,” Building and Environment, 51, 345-350 (2012). 47. Liang, H., C. P. Li, J. Bai, J. Z. Wang. A. Shan. L. P. Guo and D. Yu, “Fabrication of visible-light-responsed calcium metasilicate-supported Ag–AgX/TiO2 (X = Cl, Br, I) composites and their photocatalytic properties,” Advanced Powder Technology, 26(3), 1005-1012 (2015). 48. Liu, Y., C. Xie, H. Li., H. Chen., Y. Liao and D. Zeng, ” Low bias photoelectrocatalytic (PEC) performance for organic vapour degradation using TiO2/WO3 nanocomposite,” Applied Catalysis B: Environmental, 102(1-2), 157-162 (2011). 49. Liu, X. X., D. Zhang, B. Guo, Y. Qu, Ge Tian, H. J. Yue and S. H. Feng., “Recyclable and visible light sensitive Ag–AgBr/TiO2: Surface adsorption and photodegradation of MO,” Applied Surface Science, 353, 913-923 (2015). 50. Luo, Y. and D.F. Ollis, “Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity,” Journal of Catalysis, 163, 1-11 (1996). 51. Irokawa, Y., T. Morikawa, K. Aoki, S. Kosaka, T. Ohwaki and Y. Taga, “Photodegradation of toluene over TiO2−xNx under visible light irradiation,”Phys. Chem., 8, 1116-1121 (2006). 52. Izabela, D. G., M.Á. Gómez-García, S.M. López Zamora, E. GilPavasc, J. Bojarska, M. Kozanecki and J.M. Rynkowski, “Transition metal loaded TiO2 for phenol photo-degradation,” Comptes Rendus Chimie, 18(10), 1170-1182 (2015). 53. Mills, A., R. H. Davies and D. Worsley, “Water purification by semiconductor photocatalysis,” Chemical Society Reviews, 22(6), 417-425 (1993). 54. Mills, A. and LeHunte, S., “An overview of semiconductor photocatalysis,” Journal of Photochemistry and Photobiology A-chemistry, 108(1), 1-35 (1997). 55. Mishra, N., G. A. Ayoko, T. Salthammer and L. Morawska, “Evaluating the risk of mixtures in the indoor air of primary school classrooms,” Environ. Sci. Pollut. Res., 22(19), 15080-15088 (2015). 56. Mo, J. H., Y. P. Zhang, Q. J. Xu, J. J. Lamson and R. Y. Zhao, “Photocatalytic purification of volatile organic compounds in indoor air: A literature review,” Atmospheric Environment, 43(14), 2229-2246 (2009). 57. Mo, J., Y. Zhang, Q. Xu, Y. Zhu, J. J. Lamson and R. Zhao, “Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene,” Applied Catalysis B: Environmental, 89, 570–576 (2009). 58. Mo, J., Y. P. Zhang, Q. J. Xu, “Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation,” Applied Catalysis B: Environmental, 132-133, 212-218 (2013). 59. Molloy, S. B., M. Cheng, I. E. Galbally, M. D. Keywood, S. J. Lawson, J. C. Powell, R. Gillett, E. Dunne and P.W. Selleck, “Indoor air quality in typical temperate zone Australian dwellings,” Atmos. Environ., 54, 400-407 (2012). 60. Nguyen, T. V., S. S. Kim and O. B. Yang, “Water decomposition on TiO2–SiO2 and RuS2/TiO2–SiO2 photocatalysts: the effect of electronic characteristics,” Catalysis Communications, 5(2), 59-62 (2004). 61. Nøjgaard, J. K., K. B. Christensen and P. Wolkoff, 'The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein.' Toxicology letters, 156(2), 241-251 (2005). 62. Obee, T. N. and R. T. Brown, “TiO2 photocatalysis for indoor air applications effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,” Environmental Science & Technology, 29(5), 1223-1231 (1995). 63. Obee, T. N., “Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using a Glass-Plate Reactor,” Environ. Sci. Technol, 30(12), 3578-3584 (1996). 64. Obee, T. N. and S. O. Hay, “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environmental Science & Technology, 31(7), 2034-2038 (1997). 65. Ohno, T., F. Tanigawa, K. Fujihara. S. Izumi and M. Matsumura, “Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using Iron(III) ions as electron acceptor,” Journal of Photochemistry and Photobiology A: Chemistry, 118(1), 41-44 (1989). 66. Okamoto K., Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, “Heterogeneous photocatalytic decomposition of phenol over TiO2 powder,” Bulletin of the Chamical Society of Japan, 58(7), 2015-2022 (1985). 67. Paevere, P. J., S. Tucker, P. Crowther, S. Seo, R. Drogemuller, D. Johnston, M. Hardie, A. Williams, S. Khan, P. Mitchell, L. Kivlighon, P. Watson, G. Miller, D. Jones, S. Brown, O. Newhouse, M. Luther, M. Ambrose, J. Mahoney, P. Lawther, M. Cheng and A. O'Donnell, “Design Guidelines for Delivering High Quality Indoor Environments,” CRC for Construction Innovation (2008) 68. Peral, J. and D. F. Ollis, “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation,” Journal of Catalysis, 136(2), 554-565 (1992). 69. Perry, R. H., D. W. Green and J. O. Maloney, Perry’s chemcal engineers’ handbook 7th ed. McGraw-Hill, New York (1997). 70. Pichat, P. , “Photocatalytic Degradation of Pollutants in Water and Air: Basic Concepts and Applications,” In: Tarr, M.A., Ed. “Chemical Degradation Methods for Wastes and Pollutants Environmental and Industrial Applications,” Marcel Dekker,Inc., New York, U.S.A., 77-120 (2003). 71. Rafael, M. R. and C. M. Nelson, “Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene,” Catalysis Today, 40(4), 353-365 (1998). 72. Raillard, C., V. Héquet, P. Le Cloirec and J. Legrand, “Kinetic study of ketones photocatalytic oxidation in gas phase using TiO2-containing paper: effect of water vapor” Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 425-431 (2004). 73. Ramesh, T., B. Nayak, A. Amirbahman, C. P. Tripp and S. Mukhopadhyay, “Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review,” Innovative Food Science & Emerging Technologies, 38, 105-115 (2016). 74. Rumchev,K., J. Spickett, M. Bulsara, M. Phillips and S. Stick, “Association of domestic exposure to volatile organic compounds with asthma in young children,” Thorax, 59(9), 746-751 (2004). 75. Rodgman, A., and T. A. Perfetti, “The chemical components of tobacco and tobacco smoke, ”1st Ed., CRC Press, Boca Raton, Florida, USA(2008). 76. Sari, D. K., S. Kuwahara. Y. Tsukamoto, H. Hori, N. Kunugita, K. Arashidani, H. Fujimaki and F. Sasaki, “Effect of prolonged exposure to low concentrations of formaldehyde on the corticotropin releasing hormone neurons in the hypothalamus and adrenocorticotropic hormone cells in the pituitary gland in female mice”, Vol. 1013, No. 1, pp. 107-116 (2004). 77. Sauer, M. L. and D. F. Ollis, “Acetone oxidation in a photocatalytic monolith reactor,” Journal of Catalysis, 149(1), 81-91 (1994). 78. Scheff, P. A. and R. A. Wadden., “Receptor modeling of volatile organic compounds: 1. Emission inventory and validation,” Environmental Science and Technology,” 27(4),617-625 (1993). 79. Schwarzenbach, R. P., P. M. Gschwend and D. M. Imboden, Environment Organic Chemistry, John Wiley & Sons, New York, 1993. 80. Sclafani, A., L. Palmisano, M. Schiavello, “Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion,” J. Phys. Chem., 94(2), 829-832 (1990). 81. Sclafani, A. and J. M. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions,” J. Phys. Chem., 100(32), 13655-13661 (1996). 82. Serpone, N. and E. Pelizzetti, “photocatalysis fundamentals and applications serpone, ”1st Ed., John Wiley & Sons, New York, USA (1989). 83. Shang, J., Y. Du and Z. Xu, “Photocatalytic oxidation of heptane in the gas-phase over TiO2,” Chemosphere, 46(1), 93-99 (2002). 84. Sleiman, M., P. Conchon, C. Ferronato and J. M. Chovelon, “Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization,” Applied Catalysis B: Environmental, 86(3-4), 159-165 (2009). 85. So, W. W., K. J. Kim and Sang-Jin Moon, “Photo-production of hydrogen over the CdS–TiO2 nano-composite particulate films treated with TiCl4,” International Journal of Hydrogen Energy, 29(3), 229-234 (2004). 86. Sobana, N., K. Selvam, M. Swaminathan, “Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2,” Separation and Purification Technology, 62(3), 648-653 (2008). 87. Sui, Y., C. Su, X. Yang, J. Hu and X. Lin, “Ag-AgBr nanoparticles loaded on TiO2 nanofibers as an efficient heterostructured photocatalyst driven by visible light,” Journal of Molecular Catalysis A: Chemical, 410, 226–234 (2015). 88. Sundell J., “On the history of indoor air quality and health,” Indoor Air., 14, 51–58 (2004). 89. Takeuchi, M., J. Deguchi, S. Sakai and M. Anpo, “Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders,” Applied Catalysis B-Environmental, 96(1-2), 218-223 (2010). 90. Verbruggen, S. W., “TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 64-82 (2015). 91. Wang, K. H., H. H. Tsai and Y. H. Hsieh, “The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead,” Applied Catalysis B-Environmental, 17(4), 313-320 (1998). 92. Wang, Q. Y., R. C. Jin, M. Zhang and S. M. Gao, “Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance,” Journal of Alloys and Compounds, 690, 139-144 (2016). 93. Weschler, C. J., A. T. Hodgson and J. D. Wooley, “Indoor chemistry ozone, volatile organic compounds, and carpets,” Environmental Science & Technology, 26(12), 2371-2377 (1992). 94. Xu, W. Z., D. Raftery and J. S. Francisco, “Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR,” Journal of Physical Chemistry B, 107(19), 4537-4544 (2003). 95. Yang, R., Y. Zhang, Q. Xu and J. Mo, “A mass transfer based method for measuring the reaction coefficients of a photocatalyst,” Atmospheric Environment, 41(6), 1221-1229 (2007). 96. Yang, H., X. Y. Li, Q. D. Zhao, G. H. Chen and C. L. Raston, “Role of Hydroxyl Radicals and Mechanism of Escherichia coli Inactivation on Ag/AgBr/TiO2 Nanotube Array Electrode under Visible Light Irradiation,” Environ. Sci. Technol., 46(7), 4042–4050 (2012). 97. Yasar, S., E. Yildirim., M. Koklu., E. Gursoy., M. Celik. and U. C. Yuksel, “A case of reversible cardiomyopathy associated with acute toluene exposure,” Turkish Journal of Emergency Medicine, 16(3), 123-125 (2016). 98. Yu, H., K. Zhang and C. Rossi, “Experimental study of the photocatalytic degradation of formaldehyde in indoor air using a nano-particulate titanium dioxide photocatalyst,” Indoor and Built Environment, 16(6), 529-537 (2007). 99. Zhang, Y. J., W. Yan, Y. P. Wu and Z. H. Wang, “Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition,” Materials Letters, 62(23), 3846-3848 (2008). 100. Zhang, Y., Z. R. Tang, X. Z. Fu and Y. J. Xu, “Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase,” Applied Catalysis B: Environmental, 106(3-4), 445-452 (2011). 101. 勞動部,勞工作業環境空氣中有害物容許濃度標準 102. 吳怡亭,“使用內照明蜂巢式反應器進行低濃度揮發性有機物的移除”,國立台灣大學化學工程學研究所,博士論文,2014。 103. 林冠沂,“利用蜂巢狀光觸媒處理甲醛之研究”,國立台灣大學環境工程學研究所,碩士論文,2013。 104. 余國賓,“以紫外光/臭氧程序增進光觸媒對室內揮發性有機物去除效率之研究” ,國立台灣大學環境工程學研究所,博士論文,2006。 105. 周文傑,“燃燒金紙與拜鄉所產生氣態污染物及飛灰中金屬成分之分布”,國立成功大學環境工程學系,碩士論文,2007。 106. 郭柏成,“應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光觸媒之丙酮分解研究”,國立中山大學環境工程研究所,碩士論文,2010。 107. 洪安傑,“以蜂巢狀光觸媒載體處理室內生物源揮發性有機物之研究”,國立台灣大學環境工程學研究所,碩士論文,2012。 108. 賴明俊,“以紫外光/臭氧程序增進光觸媒對室內揮發性有機物三氯乙烯去除效率之研究”,國立台灣大學環境工程學研究所,碩士論文,2009。 109. 謝哲隆、白崢鈺,“UVA、UVC 及 UVLED 結合 Ag/TiO2光觸媒光催化甲苯反應動力”,工業污染防治 第123期,2012。 110. 宋宗信,“以 GC/MS 偵測高科技工業區內空氣中揮發性有機物濃度之研究”,國立交通大學工學院永續環境科技學程,2010。 111. 高濂、鄭珊、張青紅著/陳憲偉校訂,“奈米光觸媒”,五南圖書公司,2004。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67200 | - |
dc.description.abstract | 揮發性有機物(VOCs)為室內主要空氣污染物,與室內空氣品質(IAQ)有關,且被認為是引起病態大樓症候群(SBS)的原因之一。其中室內裝潢材料、室外汽機車、消費型產品、吸菸等,會產生不同程度的甲苯逸散,造成人體健康危害。
目前室內VOCs處理技術以光催化(Photocatalytic Oxidation,PCO)搭配紫外光為主,但有礦化率不足的問題,光催化反應產生的中間產物可能毒性更高,反而造成對室內人員的健康危害。另外,紫外光應用於室內環境,仍有安全疑慮。 本研究於光反應室中進行光電催化(Photoelectrocatalysis,PEC)反應,反應室內部放置披覆光觸媒之蜂巢狀金屬載體,能使電流均勻流經整個反應器,確保光電催化反應的進行。實驗使用的紫外光及可見光燈管波長分別為254nm及420nm,光觸媒選用Degussa P25 TiO2商業光觸媒及改質Ag/AgBr/TiO2光觸媒,溫度控制在25±1℃,濕度控制在30%。實驗之影響因子包含甲苯進流濃度、氣體流率、光波長及電壓。 本實驗參考文獻使用高反應效率比例(139.2%)配製Ag/AgBr/TiO2,與一般P25二氧化鈦進行光催化及光電催化室內甲苯比較。由實驗可知,以紫外光照射改質Ag/AgBr/TiO2,在流速0.5LPM及甲苯濃度0.2ppm下,光電催化轉化率可達95.9%;單照可見光的轉化率最高為59.9%,外加電壓後轉化率大幅提升至97.4%。而一般TiO2在相同條件下最高轉化率為97.7%。實驗結果發現進流甲苯濃度越高,轉化率越大,推測原因為光觸媒表面活性位址有限,當甲苯濃度較高時,光觸媒表面活性位址不足導致反應不完全,降低光催化效率。 利用GC-MS測量光電催化反應的產物及礦化率,發現光催化降解甲苯主要副產物為苯甲醛及苯甲酸,苯甲酸在光觸媒表面的累積是造成觸媒失活的主要原因。另外,部分苯甲醛上的氫被甲基取代反應形成苯乙酮。以紫外光照射TiO2,礦化率為85%至89%,產生較多副產物。使用改質Ag/AgBr/TiO2光觸媒,不論是照紫外光或可見光,處理甲苯的礦化率皆可以維持在95%以上,證實Ag/AgBr/TiO2改質光觸媒有助於提升處理甲苯的礦化率。 利用改質及未改質光觸媒進行5次光電催化循環實驗,TiO2照紫外光2小時後,觸媒表面有變黃漸漸失活的現象,再利用性不佳。而使用Ag/AgBr/TiO2在紫外光及可見光照射下,5次循環之後仍維持80%以上的甲苯轉化率,穩定性及再現性佳。實驗結果證明可見光光電催化搭配改質光觸媒處理室內VOCs具有未來之發展潛力。 由能源效益結果可知,Ag/AgBr/TiO2搭配可見光的能源效益(Ee)最高,兩個濃度下Ee值分別為0.2714mg kW-1 h-1及2.5891mg kW-1 h-1,而以紫外光為光源之兩種觸媒的能源效益非常接近。評估甲苯轉化率及能源效益,改質Ag/AgBr/TiO2搭配可見光光電催化處理室內VOCs,具有未來發展之潛力。 | zh_TW |
dc.description.abstract | Volatile organic compounds (VOCs) are the major indoor air pollutant which are associated with indoor air quality (IAQ). It is considered as a cause of sick building syndrome (SBS). Source of VOCs indoor including upholstery materials, outdoor motor vehicle, consumer products and smoking, etc., will produce different levels of toluene emission, causing human health hazards.
Currently, the technology of indoor VOCs treatment is based on photocatalytic oxidation (PCO) with UV light, but still have the problem of insufficient mineralization rate. The intermediate products produced by photocatalytic reaction may be more toxic, causing health hazards to indoor personnel instead. In addition, there are still have safety doubt for UV light apply to the indoor environment. In this study, toluene was degraded by photoelectrocatalytic (PEC) reaction in the photoreaction chamber, and a honeycomb metal monolith was placed inside, which can make the current flow through the whole reactor uniformly to ensure the process of photoelectrocatalytic reaction. The UV and visible light were controlled at 254nm and 420nm, and the photocatalyst was choosed the Degussa P25 TiO2 and modified Ag/AgBr/TiO2. The temperature was controlled at 25±1℃ and the humidity was maintained 30%. The impact factors of the experiment including toluene concentration, gas flow rate, light wavelength and voltage. In this study, Ag/AgBr/TiO2 was prepared with high reaction efficiency ratio (139.2%), and compared photocatalytic and photoelectrocatalytic activity with the P25 titanium dioxide. When Ag/AgBr/TiO2 was irradiated with ultraviolet light, the photoelectrocatalytic conversion of toluene was 95.9% at 0.5LPM flow rate and 0.2ppm toluene concentration. The photoelectrocatalytic conversion was significant increase from 59.9% to 97.4% after added voltage under visble light irradiation. And the highest conversion is 97.7% under the same conditions with using TiO2. The experimental results show that the higher the concentration of toluene is, the higher the conversion rate is. The reason is that active site of the photocatalyst surface is insufficient, causing the incomplete reaction , and reducing the photocatalytic efficiency. The products and mineralization rate of photoelectrocatalytic reaction were measured by GC-MS. It was found that the main byproduct of photocatalytic degradation of toluene was benzaldehyde and benzoic acid. The accumulation of benzoic acid on the surface of photocatalyst was the main reason of photocatalyst deactivation. In addition, part of the benzaldehyde form acetophenone by substitution reaction. When TiO2 was irradiated with ultraviolet light, the mineralization was 85% to 89%, resulting in more by-products. Mineralization can be maintained at more than 95% when using Ag/AgBr/TiO2 as photocatalyst, improving that it was helpful to increase the mineralization of toluene by modified photocatalyst. In the five times circulaing experiments, the TiO2 with poor reusability which was gradually deactivation after irradiated with ultraviolet light for 2 hours. It showed good stability and reproducibility that maintain at more than 80% conversion after 5 cycles when using Ag/AgBr/TiO2 as photocatalyst. The results of experiment showed the potential of processing indoor VOCs for future development by photoelectrocatalysis with modified photocatalyst and visible light. According to the result of energy efficiency, the energy efficiency of Ag/AgBr/TiO2 with visible light is the highest. The value are 0.2714mg kW-1 h-1 and 2.5891mg kW-1 h-1 respectively in two different concentration. And the energy efficiency are very close between two kinds of catalysts with UV light. Finally, evaluating the toluene conversion and energy efficiency, Ag/AgBr/TiO2 with visble light photoelectrocatalytic treatment of indoor VOCs has thepotential for future development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:23:18Z (GMT). No. of bitstreams: 1 ntu-106-R04541123-1.pdf: 3502236 bytes, checksum: 69c728bb208bbe21f0dbc21978084c81 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 vi 圖目錄 xi 表目錄 xiv 符號說明 i 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的 2 1-3 研究內容與方法 2 1-4 實驗架構 3 第二章 文獻回顧 4 2-1 揮發性有機物之定義、種類、來源與健康影響 4 2-1-1 揮發性有機物之定義與種類 4 2-1-2 室內揮發性有機物來源. 6 2-1-3 室內揮發性有機物對人體健康的影響 8 2-1-4 室內甲苯之健康影響、來源與各國規範 9 2.2 光觸媒催化反應 13 2-2-1 光催化(PCO)反應原理 13 2-2-2 光觸媒之種類與特性 16 2-2-3 二氧化鈦的結構與性質 17 2-2-4 甲苯光催化反應途徑 18 2-3 光觸媒催化反應去除VOCs之相關研究 20 2-3-1 光催化反應速率之影響因子 20 2-3-2 光催化反應動力模式 26 2-3-3 光觸媒的改質方法 31 2-3-4 光電催化技術 35 2-3-5 Ag/AgBr/TiO2改質光觸媒 36 第三章 實驗設備 40 3-1 實驗材料製備及儀器設備 40 3-1-1 實驗材料 40 3-1-2 實驗儀器設備 41 3-1-3 光觸媒的製備 42 3-2 實驗系統 43 3-2-1 實驗系統 43 3-2-2 空氣供應系統 45 3-2-3 濕度控制系統 45 3-2-4 揮發性有機氣體滲透系統 45 3-2-5 光觸媒光反應系統 47 3-2-6 氣體採樣及分析系統 49 3-3 實驗條件因子 52 3-3-1 固定條件因子 52 3-3-2 變數條件因子 52 3-4 實驗程序 54 3-4-1 實驗計算方法 54 3-5 分析儀器 56 3-5-1 掃描式電子顯微鏡 56 3-5-2 能量色散X射線光譜儀 56 3-5-3 比表面積分析儀 56 3-5-4 X射線光電子能譜儀 57 3-5-5 紫外/可見光光譜儀 57 第四章 結果與討論 58 4-1 光觸媒基本特性分析 58 4-1-1 FIB-SEM分析結果 58 4-1-2 EDS分析結果 59 4-1-3 光觸媒比表面積分析 61 4-1-4 XPS分析 62 4-1-5 UV-Visble分析 63 4-2 甲苯通入時間與反應器甲苯出流濃度關係 64 4-3 TiO2光電催化處理甲苯之結果 66 4-4 Ag/AgBr/TiO2光催化處理甲苯之結果 70 4-4-1 以紫外光為光源之處理結果 70 4-4-2 以可見光為光源之降解結果 73 4-5 光催化反應速率 76 4-6 甲苯光反應副產物分析及礦化率結果 78 4-6-1 甲苯光電反應機制推論 78 4-6-2 甲苯光電反應礦化率結果 80 4-7 光觸媒催化多次循環結果 84 4-7-1 TiO2照紫外光光電催化多次循環結果 84 4-7-2 Ag/AgBr/TiO2照紫外光光電催化多次循環結果 84 4-7-3 Ag/AgBr/TiO2照可見光光電催化多次循環結果 85 4-8 Ag/AgBr/TiO2與TiO2光電催化能源效益計算 86 第五章 結論與建議 88 5-1 結論 88 5-2 建議 90 參考文獻 91 附錄A 104 附錄B 106 | |
dc.language.iso | zh-TW | |
dc.title | 以改質二氧化鈦光電催化處理室內甲苯之研究 | zh_TW |
dc.title | Photoelectrocatalytic Oxidation of Toluene
in Indoor Environment by Using Modified TiO2 | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 余國賓,羅金翔 | |
dc.subject.keyword | 甲苯,光電催化,礦化率,揮發性有機物,Ag/AgBr/TiO2, | zh_TW |
dc.subject.keyword | toluene,photoelectrocatalysis,mineralization,volatile organic compounds,Ag/AgBr/TiO2, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU201702816 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。