Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67193
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞
dc.contributor.authorTao Chongen
dc.contributor.author張濤zh_TW
dc.date.accessioned2021-06-17T01:23:01Z-
dc.date.available2018-08-14
dc.date.copyright2017-08-14
dc.date.issued2017
dc.date.submitted2017-08-09
dc.identifier.citationAlbani, M., and P. Bernardi, 'A numerical method based on the discretization of Maxwell equations in integral form,' IEEE Trans. Microwave Theory Tech., vol. 22, pp. 446-450, 1974.
Bakker, R. M., A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, 'Near-field excitation of nanoantenna resonance,' Opt. Express, vol. 15, pp. 13682-13688, 2007.
Berenger, J. P., 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Comput. Phys., vol. 114, pp. 185-200, 1994.
Byun, K. M., and S. J. Kim, 'Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,' Opt. Express, vol. 13, pp. 3737-3742, 2005.
Chen, Y. T., and H. C. Chang, “Dipole nano-antennas with multi-bent-sections,' in Proceedings of Optics & Photonics Taiwan, International Conference 2015
(OPTIC 2015), paper, 2015-FRI-P0101-P004, National Tsing Hua University,
Hsinchu, Taiwan, R.O.C., December 45, 2015.
Chiou, S. M., and H. C. Chang, “A modified contour bowtie nano-antenna and its near-field enhancement,' in Proc. OPTIC 2013, paper, 2013-THU-P0101-P011, 2013.
Chung, S. Y., C. Y. Wang, C. H. Teng, C. P. Chen, and H. C. Chang, “Simulations of Dielectric and Plasmonic Waveguide-Coupled Ring Resonators Using the Legendre Pseudospectral Time-Domain Method,' IEEE/OSA J. Lightwave Technol., Vol. 30, No. 11, pp. 17331742, June 1, 2012.
Courant, R., K. Friedrichs, and H. Lewy, “Uber die partiellen differenzengleichungen der mathematischen physik,' Math. Ann., vol. 100, pp. 32-74, 1928. Drude, P., “Zur elektronentheorie der metalle,' Ann. Phys., vol. 1, pp. 566-613, 1900.
Fisher, H., and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantenna,' Opt. Express, vol. 16, pp. 9144-9154, 2008.
Fromm, D. P., A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, ”Gapdependent optical coupling of single “bowtie' nanoantennas resonant in the visible,' Neno. Lett., vol. 4, no. 5, pp. 957-961, 2004.
Farahani, J. N., H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,' Nanotechnol., vol. 18, no. 12, 2007, Art ID. 125506.
Harrington, R. F., “The method of moments in electromagnetics,' J. Electromagn. Waves Appl., vol. 1, pp. 181-200, 1987.
Hsiao, H. H., S. M. Chiou, Y. P. Chang, and H. C. Chang, “Broadly tunning resonant
wavelengths of contour bowtie nano-antennas operating in the near- and midinfrared,' IEEE Photon. J., vol. 7, 2015, Art ID. 4501108.
Hsiao, T. -Y., Developing 3-D FDTD numerical models for studying several nano-scale metal structures for sensing applications. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, January 2017.
Hatab, N. A. et al., “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,' Nano Lett., vol. 10, no. 12, pp. 4952-4955, 2010.
Karumuri, S., and A. K. Kalkan, “Hybird plasmon damping chemical sensor,' IEEE Trans. Nanotechno., vol. 790-795, 2011.
Kernighan, B. W., D. M. Ritchie, and P. Ejeklint, The C programming Language vol. 2: Prentice-Hall Englewood Cliffs, 1988.
Kim, S., J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,' Nature, vol. 453, no. 7196, pp. 757-760, 2008.
Ko, K. D., A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint “Nonlinear optical response from arrays of Au bowtie nanoantennas,' Nano Lett, vol. 11, no. 1, pp. 61-65, 2011.
Li, J., A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,' Phys. Rev. B, vol. 76, pp.245403-245407, 2007.
Liu, Y. -C., Study of multi-bent-section nano-antenna structures using the parallelized finite-difference time-domain method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, August 2016.
Lorentz, H. A., The Theory of Electrons. Teubner, 1906. vol. 1, pp. 122-125, 1997. Communication Systems, 2007.
Maier, S. A., Plasmonics: Fundamentals and Applications. New York, NY: Springer, 2007.
Mie, G., “Beitrage zur optik trber medien, speziell kolloidaler metallosungen,' An-nalen der Physik, vol. 330, pp. 377-445, 1908.
Novotny, L., and N. Y. Hulst, “Antennas for light,' Nat. Photon., vol. 5, no. 2, pp. 83-90, 2011.
Okoniewski, M., M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,' IEEE Microwave Guided Wave Lett., vol. 7, pp. 121-123, 1997.
Palik, E. D., Handbook of Optical Constants of Solids. London, U.K.: Academic, 1985.
Pfullmann, N., C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. kovacev, V. Knittel, R. Bratschitsch, and D. Akemeier, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,' New J. Phys., vol. 15, 2013, Art ID.093027.
Roden, J. A., and S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,' Microwave Opt. Technol. Lett., vol. 27, pp. 334-339, 2000.
Salandrino, A., A. Alu, and N. Engheta, “Parallel, series, and intermediate interconnections of optical nanocircuit elements. 1. Analytical solution,' J. Opt. Soc. Am. B, vol. 24, pp. 3007-3013, 2007.
Sederberg, S., and A. Y. Elezzabi, “Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,' Opt. Express, vol. 19, pp. 15532-15537, 2011.
Schuck, P. J., D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,' Phys. Rev. Lett., vol. 94, no. 1, Jan. 2005, Art ID. 017402.
Schuller, J. A., E. S. Barnard W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma “Plasmonics for extreme light concentration and manipulation,' Nat. Mater., vol. 9, no. 3, pp. 193-204, 2010.
Seok, T. J., A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovich, and M. C.Wu, “Radiation engineering of optical antennas for maximum field enhancement,' Nano Lett., vol. 11, pp. 2606-2610, 2011.
Sivis, M., M. Duwe, B. Abel, and C. Ropers, “Extreme-ultraviolet light generation in plasmonic nanostructures,' Nat. Phys., vol. 9, no. 5, pp. 304-309, 2013.
Sundaramurthy, A., P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,' Nano Lett., vol. 6, pp. 355-360, 2006.
Taflove, A., and M. Brodwin, Computation Electromagnetics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House, 2005.
Teng, C. H., B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre Pseudospectral Penalty Scheme for Solving Time-Domain Maxwells Equations,' J. Sci. Comput., vol. 36, No. 3, pp. 351-390, september 2008.
Umashankar, K., and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,' IEEE Trans. Electromagnetic Compat., vol. 24, pp. 397-405, 1982.
Wang, L., S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,' Nano Lett., vol. 6, pp. 361-364, 2006.
Weiland, T., “A discretization model for the solution of Maxwell's equation for six-component field,' Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116-120, 1977.
Xu, H., E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single
hemoglobin molecules by Surface Enhanced Raman Scattering,' Phys. Rev. Lett.,
vol. 83, 4357-4360, 1999.
Yee, K., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Trans. Antennas Propaga., vol. 14, pp. 302-307, 1966.
Zhang, W., L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,' Nano Lett., vol. 10, pp. 1006-1011, 2010.
Zienkiewicz, M., and Y. K. Cheung, 'Finite elements in the solution of field problems,' The Engineer, vol. 220, pp. 507-510, 1965.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67193-
dc.description.abstract時域有限差分法已被廣泛應用在光電電磁模擬上。本篇論文中,我們使用C++語言發展了三維時域有限差分法的模擬器,並透過訊息傳遞介面協定發展平行化功能以減少運算時間。
我們的研究主要在分析多種奈米金屬結構在入射一道光波後的間隙場增強量。一開始我們先模擬以一道寬頻平面波正向射入單個的多段轉折奈米天線,計算得在波長0.3微米到4.0微米間的天線間隙的場增強量及相對應的共振波長。然後將天線臂長等比例的拉長並研究不同天線臂長對其頻譜所造成的影響,發現天線臂長與共振波長呈現正線性關係。第二部分,我們研究討論等長天線臂長但不同轉折比例的多段轉折天線以及U型天線,並且將多段轉折天線與新型結構的奈米天線進行比較。透過比較間隙場增強量的結果,我們發現當多段轉折天線在x軸上有較大的比例時,會得到較大的間隙場增強量。因此我們接著研究了天線長度對線性偶極天線的影響,發現偶極天線的長度與其共振波長呈現正線性關係,且隨著偶極天線的長度拉長,會得到較大的間隙場增強量。
zh_TW
dc.description.abstractThe finite-difference time-domain (FDTD) method has been widely used in computational electromagnetics.
In this thesis, we develop a parallelized three-dimensional (3-D) FDTD simulator in C++ language and use the message passing interface (MPI) protocol in order to reduce the simulation time.
The main topic of this research is to analyze the gap-field enhancement of several nano metal structures under incident optical waves. We first simulate the single Multi-Bent-Section Nano-Antennas (MBSNAs) by applying a broadband normally incident plane wave to get their responses for the electric-field enhancement and resonant wavelengths in the antenna gap from the wavelength range of 0.3 um to 4.0 um. Then the antenna arm length of the MBSNAs are proportionally elongated and the influence of the varied antenna arm length is studied. We find that the antenna arm length has positive linear relationship with the resonant wavelength. In the second part, the MBSNA(1)'s and U-shaped nano-antennas with different proportions of the bent section with the same total antenna length are investigated. Then we study modified nano-antennas and compare with the MBSNA(1). With the results from comparing the gap-field enhancement values, we find that the MBSNA(1) with the larger proportion of x-direction component has the higher value of gap enhancement. So after that, the influence of the antenna length of the linear dipole antenna is studied.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:23:01Z (GMT). No. of bitstreams: 1
ntu-106-R04941063-1.pdf: 6093254 bytes, checksum: bbd13366c46d26cb6dd9a57445643f09 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents1 Introduction (1)
1.1 Motivations (1)
1.2 Introduction to Computational Electromagnetic (2)
1.3 Chapter Outline (3)
2 The Finite-Difference Time-Domain (FDTD) Method (5)
2.1 Yee Algorithm for Maxwell's Equations (5)
2.2 The Courant Stability Limit (6)
2.3 The Total-field/Scatter-field Technique (7)
2.4 Convolutional Perfectly Matched Layer (CPML) (8)
2.5 Modeling of Dispersive Materials (10)
2.5.1 The Drude Model (10)
2.5.2 The Drude-Lorentz Model (12)12
2.5.3 The Auxiliary Differential Equation (ADE) Method (12)
2.6 Periodic Boundary Conditions (PBC) (14)
2.7 Parallelized FDTD Method (15)
2.8 Verification of FDTD Simulated Results with Some Analytical Solutions (15)
2.8.1 Numerical Accuracy Verification for 2-D Circular Cylinders (15)
2.8.2 Numerical Accuracy Verification for the 3-D Silver Sphere (16)
3 Gap-Field Enhancement in Multi-Bent-Section Nano-Antennas (22)
3.1 Introduction (22)
3.2 Simulations of Multi-Bent-Section Nano-Antenna(i) (23)
3.3 The Effect of the Antenna Arm Length (25)
3.4 Comparisons among Different MBSNAs with the Same Antenna Arm Length (26)
4 Gap-Field Enhancement in Several Different Nano-Antenna Structures (46)
4.1 Simulations of MBSNA(1)'s with Different Bent-Section Proportions (46)
4.2 Simulations of U-Shaped Nano-Antennas (47)
4.3 Simulations of Modified Nano-Antennas (48)
4.4 Simulations of Linear Dipole Nano-Antennas (49)
5 Conclusion (72)
Bibliography (74)
dc.language.isoen
dc.title以三維時域有限差分法研究多種奈米金屬結構zh_TW
dc.title3-D FDTD Studies of Several Nano Metal Structuresen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee魏培坤,陳瑞琳,楊宗哲
dc.subject.keyword時域有限差分法,表面電漿子,奈米天線,間隙場增強量,zh_TW
dc.subject.keywordFinite-difference time-domain (FDTD) method,surface plasmons,nano-antennas,gap-field enhancement,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201702862
dc.rights.note有償授權
dc.date.accepted2017-08-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
5.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved