Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67107
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor傅立成
dc.contributor.authorDa-Wei Liuen
dc.contributor.author劉大瑋zh_TW
dc.date.accessioned2021-06-17T01:20:08Z-
dc.date.available2020-08-20
dc.date.copyright2017-08-20
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citation[1] Minsky, M., 'Microscopy apparatus,' US69510757A, 1961.
[2] Artigas, R., 'Imaging Confocal Microscopy,' in Optical Measurement of Surface Topography, R. Leach, Ed., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 237-286.
[3] Wang, S. H. , S. L. Tan, G. Xu, and K. Koyama, 'Measurement of deep groove structures using a self-fabricated long tip in a large range metrological atomic force microscope,' IOP Journal of Measurement Science and Technology, vol. 22, p. 094013, 2011.
[4] Gaoliang, D., Z. Fan, and F. Jens, 'High-speed metrological large range AFM,' IOP Journal of Measurement Science and Technology, vol. 26, p. 095402, 2015.
[5] Klapetek, P., M. Valtr, L. Picco, O. D. Payton, J. Martinek, A. Yacoot, et al., 'Large area high-speed metrology SPM system,' IOP Journal of Nanotechnology, vol. 26, p. 065501, 2015.
[6] Meller, K. and C. Theiss, 'Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells,' Springer Journal of Ultramicroscopy, vol. 106, pp. 320-325, 3// 2006.
[7] Kondra, S., J. Laishram, J. Ban, E. Migliorini, V. Di Foggia, M. Lazzarino, et al., 'Integration of confocal and atomic force microscopy images,' Journal of Neuroscience Methods, vol. 177, pp. 94-107, 2/15/ 2009.
[8] Stanciu, S. G., D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, et al., 'Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,' Materials Letters, vol. 183, pp. 105-108, 11/15/ 2016.
[9] Oyarzún, D. P., O. E. Linarez Pérez, M. López Teijelo, C. Zúñiga, E. Jeraldo, D. A. Geraldo, et al., 'Atomic force microscopy (AFM) and 3D confocal microscopy as alternative techniques for the morphological characterization of anodic TiO2 nanoporous layers,' Materials Letters, vol. 165, pp. 67-70, 2/15/ 2016.
[10] Kuyukina, M. S., I. B. Ivshina, I. O. Korshunova, and E. V. Rubtsova, 'Assessment of bacterial resistance to organic solvents using a combined confocal laser scanning and atomic force microscopy (CLSM/AFM),' Journal of Microbiological Methods, vol. 107, pp. 23-29, 12// 2014.
[11] Curie, J. a. P., 'Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées,' Comptes rendus, 1880.
[12] Montgomery, P. J. C. a. S. T., 'A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,' Journal of Ferroelectrics, 1980.
[13] Golubovic, E., T. Uzunovic, Z. Zhakypov, and A. Sabanovic, 'Adaptive control of piezoelectric walker actuator,' Proc. on IEEE International Conference on Mechatronics (ICM), 2013, pp. 132-137.
[14] Merry, R. J. E., N. C. T. d. Kleijn, M. J. G. v. d. Molengraft, and M. Steinbuch, 'Using a Walking Piezo Actuator to Drive and Control a High-Precision Stage,' IEEE/ASME Transactions on Mechatronics, vol. 14, pp. 21-31, 2009.
[15] Hansma, J. P. C. P. K., M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. B. Prater, J. Massie, L. Fukunaga, J. Gurley, and V. Elings, 'Tapping mode atomic force microscopy in liquids,' Journal of Applied Physics Letters, 1994.
[16] Garcia, T. R. R. a. R., 'Theory of Q control in atomic force microscopy,' Journal of Applied Physics Letters, 2003.
[17] 'http://bitesizebio.com/19958/what-is-confocal-laser-scanning-microscopy/.'
[18] Edwards, H., L. Taylor, and W. Duncan, 'Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,' Journal of Applied Physics 1997.
[19] Hendriks, B. H. W., W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ‘t Hooft, et al., 'High-resolution resonant and nonresonant fiber-scanning confocal microscope,' Journal of Biomedical Optics, vol. 16, pp. 026007-026007-8, 2011.
[20] Chen, C. L., J. W. Wu, Y. T. Lin, L. C. Fu, and M. Y. Chen, 'Precision Sinusoidal Local Scan for Large-Range Atomic Force Microscopy With Auxiliary Optical Microscopy,' IEEE/ASME Transactions on Mechatronics, vol. 20, pp. 226-236, 2015.
[21] Wu, J. W., J. J. Chen, M. L. Chiang, J. t. Yu, and L. C. Fu, 'Design and Control of Phase-Detection Mode Atomic Force Microscopy for Reconstruction of Cell Contours in Three Dimensions,' IEEE Transactions on Nanotechnology, vol. 13, pp. 639-649, 2014.
[22] McFarlane, D. and K. Glover, 'A loop-shaping design procedure using H<sub>∞</sub> synthesis,' IEEE Transactions on Automatic Control, vol. 37, pp. 759-769, 1992.
[23] Liu, W.-C., D.-W. Liu, J.-W. Wu, K.-Y. Chang, M.-H. Chou, and L.-C. Fu, 'Precision Sinusoidal Tracking for Galvanometer scanner with Smith Predictor-based Adaptive Sliding Mode Control,' Proc. IEEE Conference on International Automatic Control Conference (CACS), 2016.
[24] Liu, W. C. and L. C. Fu, 'A Novel Design and Advanced Control for Laser Scanning Differential Confocal Microscopy ' Dept. of Electrical Engineering, NTU, Master Thesis, 2016.
[25] 'http://www.spmtips.com/test-structures-TGF11-series.html.'
[26] Wu, J. W., Y. T. Lin, Y. T. Lo, W. C. Liu, K. Y. Chang, D. W. Liu and L. C. Fu, 'Effective Tilting Angles for a Dual Probes AFM System to Achieve High-Precision Scanning,' IEEE/ASME Transactions on Mechatronics, vol. 21, pp. 2512-2521, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67107-
dc.description.abstract原子力顯微鏡(AFM)具有奈米等級解析能力,而雷射共軛焦掃描顯微鏡(CLSM)則可獲得次微米級的掃瞄解析度表現,自發明以來已被廣泛地運用在生物以及工業領域的檢測與量測。
原子力顯微鏡雖然能獲得高精確度的三維樣本表面輪廓,但卻存在兩個掃描時的劣勢。首先受限於傳統小移動行程的壓電致動器,通常只能獲得一個小的掃瞄影像。 其次由於掃描時探針的動態行為問題,如要獲得一張高品質的掃描影像,其成像的速度將非常緩慢。雷射共軛焦掃描顯微鏡因為採用光學掃描方式,所以可以快速獲得一張掃描影像,但因為受到光學繞射極限的問題,使其解析度無法到達奈米等級,另外也受限於光學反射原理的影響,造成樣本側邊的成像會高度失真。
本論文中,我們結合上述兩種顯微鏡技術,並利用長行程的定位平台以及新穎的掃描演算法,開發出一新型複合式顯微鏡系統,藉此達到高速且高精度之影像品質。此複合式顯微鏡系統具備80奈米(nm)的掃描誤差與2.5 × 2.5釐米(cm)大範圍的掃描能力,透過雷射共軛焦顯微鏡的大範圍高速掃描,並基於樣本表面的熵(Entropy)強度來找尋出感興趣的掃描區域,並規劃長行程原子力顯微鏡之路徑,最後,透過樣本表面特徵比對方式來建構出一張兼具快速、大範圍以及高解析度之三維掃描影像。從一系列的實驗結果能證實本研究所提出的方法,可以節省65%的AFM掃描時間,而解析度僅略遜於原子力顯微鏡,同時更可以掃出釐米等級的大範圍影像,並可以有效解決傳統光學掃描方式,所造成樣本側面資訊失真的問題。
zh_TW
dc.description.abstractAtomic force microscope (AFM) and confocal laser scanning microscope (CLSM) can obtain the sample’s three-dimensional (3D) surface profile with the nanometer and sub-micron resolution, respectively. These two types of scanning instrument have been widely used in the biological and industrial fields. Despite that the AFM can get a high- resolution 3D image, it has two long-standing disadvantages. First, it suffers from a smaller travel range due to the piezoelectric actuator as the XY-scanner. Second is the dynamic behavior of the scanning probe which leads to low imaging speed. On the other hand, without increasing the same kind of dynamics problem, the CLSM employs laser as the sensing device which benefits in significant increase of the imaging speed. However, there is also a problem that CLSM due to the optical diffraction such that the imaging result cannot reach the nanometer resolution. Besides, the optical reflection principle causes severe distortion on the sidewall of the scanned sample.
In this thesis, we develop a novel hybrid microscope system, which combines two kinds of microscope technology, namely; one by AFM and another by CLSM to simultaneously achieve high-speed and high-resolution 3D scanning image. In order to achieve the above imaging demand, a long travel range positioning stage (LTRPS) and a novel scanning algorithm are also integrated into the hybrid microscope system. The proposed system is capable of providing 2.5 × 2.5 cm^2 large-scale scanning image with 50 nm resolution. Through the use of our method, first the CLSM is used to acquire a large-scale and high-speed 3D scanning image, and then the regions of interest (ROI) based on height entropy H of CLSM image is determined for the AFM path planning. Next, the AFM is called for to scan in particular the ROI to obtain finer scanning image over there. Finally, a merging method is proposed for stitching the scanning images respectively produced by the CLSM and AFM. A series of experimental results validate the proposed system and method as follows: It can save approximately 65% of scanning time compared with that obtained purely by traditional AFM, while keeping the resolution up to 80 nm slightly inferior to that of. Let is also quite worthwhile to mention that the proposed hybrid system is capable of generating centimeter level 3D images and without inducing the sidewall distortion of scanned sample.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:20:08Z (GMT). No. of bitstreams: 1
ntu-106-R04921066-1.pdf: 3623172 bytes, checksum: 2aa29ea432450280ace58a265f125957 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Table of content v
List of Acronyms vii
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.2.1 LMR-AFM system 3
1.2.2 Hybrid measuring system 6
1.3 Contribution 10
1.4 Thesis Organization 11
Chapter 2 Preliminary 12
2.1 Fundamentals of Piezoelectric Actuation 12
2.1.1 Piezoelectric effect 13
2.1.2 Hysteresis phenomenon 14
2.2 Fundamentals of Piezoelectric Legs Actuation 15
2.2.1 Piezoelectric legs driving principle 16
2.2.2 Piezoelectric legs driving waveform 18
2.3 Operation Principle of AFM 20
2.3.1 Tip-sample interaction modes 21
2.3.2 AFM scanning schemes 24
2.4 Operation Principle of CLSM 26
2.4.1 Confocal Laser Scanning Microscope 27
Chapter 3 Hardware Design 30
3.1 AFM Subsystem 31
3.1.1 AFM scanning subsystem 33
3.1.2 AFM measuring subsystem 35
3.2 CLSM Subsystem 36
3.2.1 CLSM scanning subsystem 36
3.2.2 CLSM measuring subsystem 39
3.3 Piezoelectric Legs LTRPS subsystem 42
3.4 Hardware Equipment 45
Chapter 4 Novel Hybrid Scanning Algorithm 47
4.1 System Calibration 48
4.2 Cooperative Strategy 51
4.3 Scanning Trajectory 58
4.4 The Integration Method for Scanning Results 61
Chapter 5 Experiments 63
5.1 Experimental Setup 63
5.2 System Controller 66
5.3 Scanning Application 68
5.3.1 CLSM scanning results 69
5.3.2 AFM scanning results 71
5.3.3 Hybrid scanning results 72
Chapter 6 Conclusions 73
Reference 75
dc.language.isoen
dc.subject原子力顯微鏡zh_TW
dc.subject雷射共軛焦顯微鏡zh_TW
dc.subject長行程平台zh_TW
dc.subject高精確掃描zh_TW
dc.subject路徑規劃zh_TW
dc.subject感興趣區域掃描zh_TW
dc.subjecthigh-precision scanen
dc.subjectregions of interest (ROI)en
dc.subjectAtomic force microscope (AFM)en
dc.subjectconfocal laser scanning microscope (CLSM)en
dc.subjectlong travel range stageen
dc.subjectpath planningen
dc.title雷射共軛焦顯微鏡暨原子力顯微鏡之新穎複合系統設計zh_TW
dc.titleA Novel Design of Hybrid Microscope by Integrating Atomic-Force Microscope and Confocal Laser Scanning Microscopeen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏家鈺,練光祐,陳美勇,陳亮嘉
dc.subject.keyword原子力顯微鏡,雷射共軛焦顯微鏡,長行程平台,高精確掃描,路徑規劃,感興趣區域掃描,zh_TW
dc.subject.keywordAtomic force microscope (AFM),confocal laser scanning microscope (CLSM),long travel range stage,high-precision scan,path planning,regions of interest (ROI),en
dc.relation.page77
dc.identifier.doi10.6342/NTU201702070
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
3.54 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved