Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67104
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃楓婷
dc.contributor.authorYu-Hsuan Changen
dc.contributor.author張育瑄zh_TW
dc.date.accessioned2021-06-17T01:20:03Z-
dc.date.available2022-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citationAoi, W., & Sakuma, K. (2013). Skeletal muscle: a novel and intriguing characteristics as a secretory organ. BioDiscovery(7). doi:10.7750/BioDiscovery.2013.7.2
Bae, S. Y., Park, H. J., Hong, J. Y., Lee, H. J., & Lee, S. K. (2016). Down-regulation of SerpinB2 is associated with gefitinib resistance in non-small cell lung cancer and enhances invadopodia-like structure protrusions. Sci Rep, 6, 32258. doi:10.1038/srep32258
Bostrom, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., . . . Spiegelman, B. M. (2012). A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463-468. doi:10.1038/nature10777
Bouchet, C., Hacene, K., Martin, P. M., Becette, V., Tubiana-Hulin, M., Lasry, S., . . . Spyratos, F. (1999). Dissemination risk index based on plasminogen activator system components in primary breast cancer. J Clin Oncol, 17(10), 3048-3057. doi:10.1200/JCO.1999.17.10.3048
Chang, S. M., Parney, I. F., Huang, W., Anderson, F. A., Jr., Asher, A. L., Bernstein, M., . . . Glioma Outcomes Project, I. (2005). Patterns of care for adults with newly diagnosed malignant glioma. JAMA, 293(5), 557-564. doi:10.1001/jama.293.5.557
Cheng, W. Y., Chiao, M. T., Liang, Y. J., Yang, Y. C., Shen, C. C., & Yang, C. Y. (2013). Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol Biol Rep, 40(9), 5315-5326. doi:10.1007/s11033-013-2632-1
Choi, B. H., Kim, C. G., Bae, Y. S., Lim, Y., Lee, Y. H., & Shin, S. Y. (2008). p21 Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Cancer Res, 68(5), 1369-1377. doi:10.1158/0008-5472.CAN-07-5222
Chou, R. H., Wen, H. C., Liang, W. G., Lin, S. C., Yuan, H. W., Wu, C. W., & Chang, W. S. (2012). Suppression of the invasion and migration of cancer cells by SERPINB family genes and their derived peptides. Oncol Rep, 27(1), 238-245. doi:10.3892/or.2011.1497
Cormie, P., Nowak, A. K., Chambers, S. K., Galvao, D. A., & Newton, R. U. (2015). The potential role of exercise in neuro-oncology. Front Oncol, 5, 85. doi:10.3389/fonc.2015.00085
Croucher, D. R., Saunders, D. N., Lobov, S., & Ranson, M. (2008). Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer, 8(7), 535-545. doi:10.1038/nrc2400
Dano, K., Romer, J., Nielsen, B. S., Bjorn, S., Pyke, C., Rygaard, J., & Lund, L. R. (1999). Cancer invasion and tissue remodeling--cooperation of protease systems and cell types. APMIS, 107(1), 120-127.
De Siervi, A., Marinissen, M., Diggs, J., Wang, X. F., Pages, G., & Senderowicz, A. (2004). Transcriptional activation of p21(waf1/cip1) by alkylphospholipids: role of the mitogen-activated protein kinase pathway in the transactivation of the human p21(waf1/cip1) promoter by Sp1. Cancer Res, 64(2), 743-750.
Dey, G., Radhakrishnan, A., Syed, N., Thomas, J. K., Nadig, A., Srikumar, K., . . . Prasad, T. S. (2013). Signaling network of Oncostatin M pathway. J Cell Commun Signal, 7(2), 103-108. doi:10.1007/s12079-012-0186-y
Dickinson, J. L., Bates, E. J., Ferrante, A., & Antalis, T. M. (1995). Plasminogen activator inhibitor type 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an alternate biological function. J Biol Chem, 270(46), 27894-27904.
Ebert, T., Focke, D., Petroff, D., Wurst, U., Richter, J., Bachmann, A., . . . Fasshauer, M. (2014). Serum levels of the myokine irisin in relation to metabolic and renal function. Eur J Endocrinol, 170(4), 501-506. doi:10.1530/EJE-13-1053
Fish, R. J., & Kruithof, E. K. (2006). Evidence for serpinB2-independent protection from TNF-alpha-induced apoptosis. Exp Cell Res, 312(3), 350-361. doi:10.1016/j.yexcr.2005.11.003
Gannon, N. P., Vaughan, R. A., Garcia-Smith, R., Bisoffi, M., & Trujillo, K. A. (2015). Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer, 136(4), E197-202. doi:10.1002/ijc.29142
Gessler, F., Voss, V., Seifert, V., Gerlach, R., & Kogel, D. (2011). Knockdown of TFPI-2 promotes migration and invasion of glioma cells. Neurosci Lett, 497(1), 49-54. doi:10.1016/j.neulet.2011.04.027
Guo, G., Yao, W., Zhang, Q., & Bo, Y. (2013). Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PLoS One, 8(8), e72079. doi:10.1371/journal.pone.0072079
Hojman, P., Dethlefsen, C., Brandt, C., Hansen, J., Pedersen, L., & Pedersen, B. K. (2011). Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol Endocrinol Metab, 301(3), E504-510. doi:10.1152/ajpendo.00520.2010
Holland, E. C. (2000). Glioblastoma multiforme: the terminator. Proc Natl Acad Sci U S A, 97(12), 6242-6244.
Jak, A. J. (2012). The impact of physical and mental activity on cognitive aging. Curr Top Behav Neurosci, 10, 273-291. doi:10.1007/7854_2011_141
Jensen, P. H., Jensen, T. G., Laug, W. E., Hager, H., Gliemann, J., & Pepinsky, B. (1996). The exon 3 encoded sequence of the intracellular serine proteinase inhibitor plasminogen activator inhibitor 2 is a protein binding domain. J Biol Chem, 271(43), 26892-26899.
Joseph George, C. S. G., Dzung H. Dinh, Meena Gujrati, and Jasti S. Rao. (2007). Restoration of TFPI-2 in a Human Glioblastoma Cell Line Triggers Caspase Mediated Pathway and Apoptosis. Clin Cancer Res., 13(12), 3507-3517.
Konduri, S. D., Osman, F. A., Rao, C. N., Srinivas, H., Yanamandra, N., Tasiou, A., . . . Rao, J. S. (2002). Minimal and inducible regulation of tissue factor pathway inhibitor-2 in human gliomas. Oncogene, 21(6), 921-928. doi:10.1038/sj.onc.1204983
Konduri, S. D., Srivenugopal, K. S., Yanamandra, N., Dinh, D. H., Olivero, W. C., Gujrati, M., . . . Rao, J. S. (2003). Promoter methylation and silencing of the tissue factor pathway inhibitor-2 (TFPI-2), a gene encoding an inhibitor of matrix metalloproteinases in human glioma cells. Oncogene, 22(29), 4509-4516. doi:10.1038/sj.onc.1206695
Konduri, S. D., Yanamandra, N., Dinh, D. H., Olivero, W. C., Gujrati, M., Foster, D. C., . . . Rao, J. S. (2003). Physiological and chemical inducers of tissue factor pathway inhibitor-2 in human glioma cells. Int J Oncol, 22(6), 1277-1283.
Lee, H. H. (2015). Study the effect of irisin on human glioblastoma cell line, U-87 MG (Unpublished master dissertation), National Taiwan University, Taipei, 63 pp.
Lee, P., Linderman, Joyce D., Smith, S., Brychta, Robert J., Wang, J., Idelson, C., . . . Celi, Francesco S. (2014). Irisin and FGF21 Are Cold-Induced Endocrine Activators of Brown Fat Function in Humans. Cell Metab, 19(2), 302-309. doi:10.1016/j.cmet.2013.12.017
Letícia de Almeida Brondani, T. S. A., Guilherme Coutinho, & Kullmann Duarte, J. L. G., Luís Henrique Canani, Daisy Crispim. (2012). The role of the uncoupling protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arq Bras Endocrinol Metabol., 56(4), 215-225.
Liu, J. J., Liu, S., Wong, M. D., Tan, C. S., Tavintharan, S., Sum, C. F., & Lim, S. C. (2014). Relationship between circulating irisin, renal function and body composition in type 2 diabetes. J Diabetes Complications, 28(2), 208-213. doi:10.1016/j.jdiacomp.2013.09.011
Mahmoodnia, L., Sadoughi, M., Ahmadi, A., & Kafeshani, M. (2017). Relationship between serum irisin, glycemic indices, and renal function in type 2 diabetic patients. J Renal Inj Prev, 6(2), 88-92. doi:10.15171/jrip.2017.17
McTiernan, A. (2008). Mechanisms linking physical activity with cancer. Nat Rev Cancer, 8(3), 205-211. doi:10.1038/nrc2325
Novelle, M. G., Contreras, C., Romero-Pico, A., Lopez, M., & Dieguez, C. (2013). Irisin, Two Years Later. Int J Endocrinol, 2013, 746281. doi:10.1155/2013/746281
Park, K. H., Zaichenko, L., Brinkoetter, M., Thakkar, B., Sahin-Efe, A., Joung, K. E., . . . Mantzoros, C. S. (2013). Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab, 98(12), 4899-4907. doi:10.1210/jc.2013-2373
Pischon, T., Lahmann, P. H., Boeing, H., Friedenreich, C., Norat, T., Tjonneland, A., . . . Riboli, E. (2006). Body size and risk of colon and rectal cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst, 98(13), 920-931. doi:10.1093/jnci/djj246
Qiao, X., Nie, Y., Ma, Y., Chen, Y., Cheng, R., Yin, W., . . . Xu, L. (2016). Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep, 6, 18732. doi:10.1038/srep18732
Ragione, F. D., Cucciolla, V., Criniti, V., Indaco, S., Borriello, A., & Zappia, V. (2003). p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect. J Biol Chem, 278(26), 23360-23368. doi:10.1074/jbc.M300771200
Rao, C. N., Lakka, S. S., Kin, Y., Konduri, S. D., Fuller, G. N., Mohanam, S., & Rao, J. S. (2001). Expression of tissue factor pathway inhibitor 2 inversely correlates during the progression of human gliomas. Clin Cancer Res, 7(3), 570-576.
Rao, C. N., Reddy, P., Liu, Y., O'Toole, E., Reeder, D., Foster, D. C., . . . Woodley, D. T. (1996). Extracellular matrix-associated serine protease inhibitors (Mr 33,000, 31,000, and 27,000) are single-gene products with differential glycosylation: cDNA cloning of the 33-kDa inhibitor reveals its identity to tissue factor pathway inhibitor-2. Arch Biochem Biophys, 335(1), 82-92. doi:10.1006/abbi.1996.0484
Rhim, J. H., Luo, X., Gao, D., Xu, X., Zhou, T., Li, F., . . . Xia, X. (2016). Cell type-dependent Erk-Akt pathway crosstalk regulates the proliferation of fetal neural progenitor cells. Sci Rep, 6, 26547. doi:10.1038/srep26547
Sanchis-Gomar, F., Lippi, G., Mayero, S., Perez-Quilis, C., & Garcia-Gimenez, J. L. (2012). Irisin: a new potential hormonal target for the treatment of obesity and type 2 diabetes. J Diabetes, 4(3), 196. doi:10.1111/j.1753-0407.2012.00194.x
Santhi D Konduri, C. N. R., Nirmala Chandrasekar, Anastasia Tasiou,, Sanjeeva Mohanam, Y. K., Sajani S Lakka, Dzung Dinh, William C Olivero,, & Meena Gujrati, D. C. F., Walter Kisiel and Jasti S Rao. (2001). A novel function of tissue factor pathway inhibitor-2 (TFPI-2) in human glioma invasion. Oncogene, 20(47), 6938-6945. doi:10.1038/sj.onc.1204847
Schnyder, S., & Handschin, C. (2015). Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise. Bone, 80, 115-125. doi:10.1016/j.bone.2015.02.008
Shao, L., Li, H., Chen, J., Song, H., Zhang, Y., Wu, F., . . . Tang, D. (2017). Irisin suppresses the migration, proliferation, and invasion of lung cancer cells via inhibition of epithelial-to-mesenchymal transition. Biochem Biophys Res Commun, 485(3), 598-605. doi:10.1016/j.bbrc.2016.12.084
Shen, H., Boyer, M., & Cheng, T. (2008). Flow cytometry-based cell cycle measurement of mouse hematopoietic stem and progenitor cells. Methods in Molecular Biology, 430, 77-86. doi:10.1007/978-1-59745-182-6_5.
Sierko E, W. M., Kisiel W. (2007). The role of tissue factor pathway inhibitor-2 in cancer biology. Semin Thromb Hemost., 33(7), 653-659. doi:10.1055/s-2007-991532
Spyratos, F., Bouchet, C., Tozlu, S., Labroquere, M., Vignaud, S., Becette, V., . . . Bieche, I. (2002). Prognostic value of uPA, PAI-1 and PAI-2 mRNA expression in primary breast cancer. Anticancer Res, 22(5), 2997-3003.
Steindorf, K., Ritte, R., Eomois, P. P., Lukanova, A., Tjonneland, A., Johnsen, N. F., . . . Kaaks, R. (2013). Physical activity and risk of breast cancer overall and by hormone receptor status: the European prospective investigation into cancer and nutrition. Int J Cancer, 132(7), 1667-1678. doi:10.1002/ijc.27778
Stetler-Stevenson, W. G., & Yu, A. E. (2001). Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol, 11(2), 143-152. doi:10.1006/scbi.2000.0365
Swick, A. G., Orena, S., & O'Connor, A. (2013). Irisin levels correlate with energy expenditure in a subgroup of humans with energy expenditure greater than predicted by fat free mass. Metabolism, 62(8), 1070-1073. doi:10.1016/j.metabol.2013.02.012
Tekin, S., Erden, Y., Sandal, S., & Yilmaz, B. (2015). Is Irisin an Anticarcinogenic Peptide? Medicine Science | International Medical Journal, 4(2), 2172. doi:10.5455/medscience.2014.03.8210
Tonnetti, L., Netzel-Arnett, S., Darnell, G. A., Hayes, T., Buzza, M. S., Anglin, I. E., . . . Antalis, T. M. (2008). SerpinB2 protection of retinoblastoma protein from calpain enhances tumor cell survival. Cancer Res, 68(14), 5648-5657. doi:10.1158/0008-5472.CAN-07-5850
Williams, P. T. (2014). Reduced risk of brain cancer mortality from walking and running. Med Sci Sports Exerc, 46(5), 927-932. doi:10.1249/MSS.0000000000000176
Wojtukiewicz, M. Z., Sierko, E., Zimnoch, L., Kozlowski, L., & Kisiel, W. (2003). Immunohistochemical localization of tissue factor pathway inhibitor-2 in human tumor tissue. Thromb Haemost, 90(1), 140-146.
Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., . . . Spiegelman, B. M. (2013). Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab, 18(5), 649-659. doi:10.1016/j.cmet.2013.09.008
Yang, X., Martin, T. A., & Jiang, W. G. (2013). Biological influence of brain-derived neurotrophic factor (BDNF) on colon cancer cells. Exp Ther Med, 6(6), 1475-1481. doi:10.3892/etm.2013.1330
Zhang, Y., Li, R., Meng, Y., Li, S., Donelan, W., Zhao, Y., . . . Tang, D. (2014). Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 63(2), 514-525. doi:10.2337/db13-1106
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67104-
dc.description.abstract規律運動能降低罹癌風險與延緩癌症進程。目前已知許多運動誘導產生的因子可能是預防癌症的重要因素,而由運動誘導分泌的irisin為一種肌肉激素,作用於白色脂肪細胞並促進其分化成類棕色脂肪細胞,此過程稱為褐化作用。另外,其他研究顯示,irisin顯著降低乳癌、前列腺癌與肺癌細胞株的存活能力 (cell viability),而我們先前的研究也發現irisin會抑制人類神經膠質瘤細胞株U-87 MG的侵襲能力 (cell invasion)。然而,irisin如何影響癌細胞的分子機制仍未闡明。
本論文中,以E. coli系統表現及純化人類irisin重組蛋白,並探討irisin對人類神經膠質瘤細胞株U-87 MG之影響。在體外實驗結果顯示,irisin使細胞進入休息狀態的G0期來抑制U-87 MG增生,但並不影響細胞凋亡。接著,以轉錄體學分析來研究irisin如何影響U-87 MG的生理功能,觀察到irisin會提高SerpinB2及TFPI-2的mRNA及蛋白質表現,這兩者皆參與細胞侵襲的過程,是多種絲氨酸蛋白酶 (serine proteases) 的抑制物。因此,我們藉由抑制SerpinB2或TFPI-2的基因表現,來評估irisin是否誘導其表現來抑制細胞侵襲。由實驗結果發現抑制SerpinB2表現會降低細胞增生、遷移 (cell migration) 及侵襲能力,但irisin對抑制SerpinB2表現的細胞沒有影響力。此外,抑制TFPI-2表現不影響細胞增生,但會促進細胞遷移及侵襲,且irisin抑制侵襲的能力被抵銷。最後,體內實驗發現,irisin能延緩小鼠皮下異體移植的U-87 MG細胞生長。
由以上實驗結果了解irisin藉由增加TFPI-2的表現而抑制U-87 MG細胞侵襲,然而irisin如何抑制U-87 MG細胞增生的機制須有更進ㄧ步的研究,因此,本論文提議irisin在運動延緩癌症進程中扮演重要的角色,並且具有潛力幫助癌症治療。
zh_TW
dc.description.abstractRegular exercise can prevent cancer and delay cancer progression. It is known that several exercise-induced factors could be the important factors for cancer prevention. Irisin was identified as one myokine induced by exercise. Irisin targets to white adipocytes and induces white adipocytes differentiating into brown-like adipocytes, and the process is called browning. Other studies revealed that irisin significantly decreases cell viability in breast, prostate and lung cancer cells. Moreover, our previous studies found that irisin inhibits cell invasion in the human glioblastoma cell line, U-87 MG. However, the molecular mechanism of how irisin affects cancer cells remains unclear.
In this research, recombinant human irisin protein was produced in E.coli and purified by the Ni-NTA column. Next, we investigated the effects of irisin on U-87 MG. In vitro studies indicated that irisin made cells enter G0 phase, resulting in reduced cell proliferation of U-87 MG, but no effect in apoptosis. Next, transcriptome NGS analysis was performed to further clarify how irisin regulated biological functions of U-87 MG. Both mRNA and protein levels of SerpinB2 and TFPI-2 were up-regulated by irisin. SerpinB2 and TFPI-2 are inhibitors for several serine proteases important for cell invasion. Thus, we knocked down SerpinB2 or TFPI-2 expression to assess if irisin inhibited cell invasion by inducing expression of these two genes. SerpinB2 knockdown cells reduced cell proliferation, migration and invasion, and irisin had no further effects on these cells. Moreover, knockdown of TFPI-2 did not affect cell proliferation, but increased cell invasion and migration. In addition, the inhibition of cell invasion ability by irisin was rescued in TFPI-2 knockdown cells. Furthermore, in vivo studies found that irisin retarded tumor growth in subcutaneous U-87 MG xenograft tumor models.
Our results indicated that irisin inhibited U-87 MG cell invasion by up-regulating TFPI-2 expression. However, the mechanism of how irisin reduced cell proliferation will need further investigation. Therefore, we proposed that irisin plays an important role in exercise delaying cancer progression and irisin was a potential target for cancer treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:20:03Z (GMT). No. of bitstreams: 1
ntu-106-R04b22007-1.pdf: 3034816 bytes, checksum: 6738e47716cecbb97cec24f38d67627f (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents謝辭 i
中文摘要 ii
Abstract iii
Abbreviations v
Table of contents vi
Chapter 1 Introduction 1
1.1 Exercise and cancer 1
1.2 Exercise-induced cytokines and myokines 2
1.3 Irisin 3
1.3.1 Biological functions of irisin 3
1.3.2 The role of irisin in cancer 5
1.4 Glioblastoma and physical disability 6
1.5 Proteases in tumor invasion 7
1.6 Research purpose 9
Chapter 2 Materials and Methods 11
2.1 Recombinant protein preparation 11
2.1.1 BL21(DE3) expression system 11
2.1.2 Protein induction 11
2.1.3 Purification and condensation 11
2.1.4 Endotoxin removal and quantification 12
2.2 Cell culture 13
2.3 Cell viability/proliferation analysis 13
2.4 Cell cycle analysis 15
2.5 Apoptosis analysis 15
2.6 Immunostaining 16
2.7 Transcriptome analysis 17
2.7.1 RNA sample preparation 17
2.7.2 Next generation sequencing (NGS) 17
2.7.3 Bioinformatics analysis 17
2.8 cDNA of cellular mRNA preparation 18
2.9 Real-time quantitative PCR (RT-qPCR) 19
2.10 Cellular protein extraction 19
2.11 Electrophoresis and western blotting 20
2.12 RNA interference 21
2.13 Transwell migration assay 21
2.14 Transwell invasion assay 22
2.15 In vivo xenograft tumor model 23
2.16 Statistical analysis 23
Chapter 3 Results 24
3.1 Recombinant irisin protein was expressed and purified from bacteria 24
3.2 Irisin reduced cell viability and cell number of U-87 MG 24
3.3 Irisin inhibited cell proliferation of U-87 MG by cell cycle alteration 26
3.4 Irisin reduced cell proliferation and invasion of U-87 MG through inhibition of ERK pathway 28
3.5 Identification of other signaling pathway regulated by irisin by transcriptome analysis 29
3.6 The role of SerpinB2 in irisin-reduced cell proliferation and invasion 30
3.7 Irisin induced TFPI-2 expression to repress the cell invasion ability of U-87 MG 32
3.8 Irisin repressed in vivo tumor growth 35
Chapter 4 Discussion 36
4.1 Cell cycle distribution of the irisin-treated U-87 MG cells 36
4.2 The MAPK/ERK pathway regulated by irisin in many type of cells 37
4.3 The transcriptome NGS analysis of irisin-treated U-87 MG cells 38
4.4 The role of SerpinB2 in cancers 38
4.5 The possible mechanism of irisin inducing the expression of TFPI2 40
Chapter 5 Summary and future prospects 42
Chapter 6 Reference list 44
Figures 50
Figure 1. The purified recombinant human irisin protein 51
Figure 2. Irisin reduced cell viability and number of U-87 MG 54
Figure 3. Irisin had no effect on apoptosis of U-87 MG 55
Figure 4. Irisin had no effect on cell cycle distribution of U-87 MG 56
Figure 5. Irisin induced U-87 MG cells into G0 phase 58
Figure 6. Irisin had no effect on cell migration of U-87 MG 59
Figure 7. Irisin inhibited cell invasion ability of U-87 MG 60
Figure 8. Irisin treatment decreased phosphorylation level of ERK 61
Figure 9. Gene expression of U-87 MG cells with irisin treatment through transcriptome analysis 63
Figure 10. Irisin induced the mRNA and protein expression of SerpinB2 64
Figure 11. Effects of irisin on cell proliferation and invasion of SerpinB2-knockdown U-87 MG cells 67
Figure 12. Irisin induced the mRNA and protein expression of TFPI-2 68
Figure 13. Effects of irisin on cell proliferation and invasion of TFPI-2-knockdown U-87 MG cells 71
Figure 14. Irisin reduced tumor growth in vivo xenograft tumor model of U-87 MG 73
Appendixes 74
1. Details of primers 75
2. RT-qPCR conditions 75
3. Antibodies 76
4. The Silencer® Select siRNA duplex (Ambion) sequences 76
dc.language.isoen
dc.title探討Irisin對人類神經膠質瘤細胞株U-87 MG之機制影響zh_TW
dc.titleStudy the Mechanism of Exercise-Induced Irisin on Human Glioblastoma Cell Line, U-87 MGen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周綠蘋,黃兆祺,廖憶純,陳彥榮
dc.subject.keywordirisin,細胞增生,細胞侵襲,zh_TW
dc.subject.keywordirisin,cell proliferation,cell invasion,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201702939
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved