Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳立仁(Li-Jen Chen)
dc.contributor.authorKuang-Yu Changen
dc.contributor.author張光宇zh_TW
dc.date.accessioned2021-06-17T01:19:44Z-
dc.date.available2025-08-17
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1.K. Kvenvolden, Gas Hydrates—Geological Perspective and Global Change. Reviews of Geophysics, 1993. 31: p. 173-187.
2.E.G. Hammerschmidt, Formation of Gas Hydrates in Natural Gas Transmission Lines. Industrial Engineering Chemistry, 1934. 26(8): p. 851-855.
3.E.D. Sloan, Fundamental Principles and Applications of Natural Gas Hydrates. Nature, 2003. 426(6964): p. 353-359.
4.E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases. Third Edition. Chemical Industries. 2007: CRC Press, Boca Raton.
5.P.G. Lafond, K.A. Olcott, E.D. Sloan, C.A. Koh, A.K. Sum, Measurements of Methane Hydrate Equilibrium in Systems Inhibited with NaCl and Methanol. Journal of Chemical Thermodynamics, 2012. 48: p. 1-6.
6.H. Kanda. Economics Study on Natural Gas Transportation with Natural Gas Hydrate Pellets. in 23rd World Gas Conference. 2006. Amsterdam.
7.T. Nogami, S. Watanabe. Development of Natural Gas Supply Chain by Means of Natural Gas Hydrate (NGH). in International Petroleum Technology Conference. 2008. Kuala Lumpur, Malaysia.
8.S. Watanabe, S. Takahashi, H. Mizubayashi, S. Murata, H. Murakami. A Demonstration Project of NGH Land Transportation System. in Proceedings of the 6th International Conference on Gas Hydrates. 2008. Vancouver, British Columbia, Canada.
9.A. Demirbas, Processes for Methane Production from Gas Hydrates, in Methane Gas Hydrate. 2010, Springer London: London. p. 161-181.https://doi.org/10.1007/978-1-84882-872-8_5.
10.W. Sung, H. Kang, Experimental Investigation of Production Behaviors of Methane Hydrate Saturated in Porous Rock. Energy Sources, 2003. 25: p. 845-856.
11.G. Moridis, M. Reagan, Strategies for Gas Production From Oceanic Class 3 Hydrate Accumulations. 2007.
12.G.C. Fitzgerald, M.J. Castaldi, Y. Zhou, Large Scale Reactor Details and Results for the Formation and Decomposition of Methane Hydrates via Thermal Stimulation Dissociation. Journal of Petroleum Science and Engineering, 2012. 94-95: p. 19-27.
13.C. Cranganu, In-Situ Thermal Stimulation of Gas Hydrates. Journal of Petroleum Science and Engineering, 2009. 65(1): p. 76-80.
14.L. Fournaison, A. Delahaye, I. Chatti, J.P. Petitet, CO2 Hydrates in Refrigeration Processes. Industrial Engineering Chemistry Research, 2004. 43(20): p. 6521-6526.
15.A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán-Cervera, F. Molés, B. Peris, G. Verdú, Commercial Refrigeration – An Overview of Current Status. International Journal of Refrigeration, 2015. 57: p. 186-196.
16.K. Wang, M. Eisele, Y. Hwang, R. Radermacher, Review of Secondary Loop Refrigeration Systems. International Journal of Refrigeration, 2010. 33(2): p. 212-234.
17.Z. Youssef, L. Fournaison, A. Delahaye, M. Pons, Management of Vapor Release in Secondary Refrigeration Processes Based on Hydrates Involving CO2 as Guest Molecule. International Journal of Refrigeration, 2019. 98: p. 202-210.
18.Q. Sun, Y.T. Kang, Review on CO2 Hydrate Formation/Dissociation and Its Cold Energy Application. Renewable and Sustainable Energy Reviews, 2016. 62: p. 478-494.
19.J. Oignet, H.M. Hoang, V. Osswald, A. Delahaye, L. Fournaison, P. Haberschill, Experimental Study of Convective Heat Transfer Coefficients of CO2 Hydrate Slurries in a Secondary Refrigeration Loop. Applied Thermal Engineering, 2017. 118: p. 630-637.
20.C.A. Koh, E.D. Sloan, Natural Gas Hydrates: Recent Advances and Challenges in Energy and Environmental Applications. AIChE Journal, 2007. 53(7): p. 1636-1643.
21.A.A. Khokhar, J.S. Gudmundsson, E.D. Sloan, Gas Storage in Structure H Hydrates. Fluid Phase Equilibria, 1998. 150-151: p. 383-392.
22.H. Davy, On a Combination of Oxymuriatic Gas and Oxygen Gas. Philosophical Transactions of the Royal Society of London, 1832. 1: p. 393-394.
23.G.R. Dickens, J.R. O'Neil, D.K. Rea, R.M. Owen, Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene. Paleoceanography, 1995. 10(6): p. 965-971.
24.T.H. Kwon, T.J. Kneafsey, E.V.L. Rees, Thermal Dissociation Behavior and Dissociation Enthalpies of Methane–Carbon Dioxide Mixed Hydrates. Journal of Physical Chemistry B, 2011. 115(25): p. 8169-8175.
25.G.K. Anderson, Enthalpy of Dissociation and Hydration Number of Methane Hydrate from the Clapeyron Equation. Journal of Chemical Thermodynamics, 2004. 36(12): p. 1119-1127.
26.G.K. Anderson, Enthalpy of Dissociation and Hydration Number of Carbon Dioxide Hydrate from the Clapeyron Equation. Journal of Chemical Thermodynamics, 2003. 35(7): p. 1171-1183.
27.A. Gupta, J. Lachance, E.D. Sloan, C.A. Koh, Measurements of Methane Hydrate Heat of Dissociation using High Pressure Differential Scanning Calorimetry. Chemical Engineering Science, 2008. 63(24): p. 5848-5853.
28.N.G. Parsonage, L.A.K. Staveley, Thermodynamic Properties of Clathrates: I. The Heat Capacity and Entropy of Argon in the Argon Quinol Clathrates. Molecular Physics, 1959. 2(2): p. 212-222.
29.N.G. Parsonage, L.A.K. Staveley, Thermodynamic Properties of Clathrates: II. The Heat Capacity and Entropy of Methane in the Methane Quinol Clathrates. Molecular Physics, 1960. 3(1): p. 59-66.
30.N.R. Grey, N.G. Parsonage, L.A.K. Staveley, Thermodynamic Properties of Clathrates. Molecular Physics, 1961. 4(2): p. 153-159.
31.O. Yamamuro, H. Suga, Thermodynamic Studies of Clathrate Hydrates. Journal of Thermal Analysis, 1989. 35(6): p. 2025-2064.
32.D.G. Leaist, J.J. Murray, M.L. Post, D.W. Davidson, Enthalpies of Decomposition and Heat Capacities of Ethylene Oxide and Tetrahydrofuran Hydrates. Journal of Physical Chemistry, 1982. 86(21): p. 4175-4178.
33.R.M. Rueff, E.D. Sloan, F.Y. Victor, Heat Capacity and Heat of Dissociation of Methane Hydrates. AIChE Journal, 1988. 34(9): p. 1468-1476.
34.Y.P. Handa, Heat Capacities in the Range 95 to 260 K and Enthalpies of Fusion for Structure-II Clathrate Hydrates of Some Cyclic Ethers. Journal of Chemical Thermodynamics, 1985. 17(3): p. 201-208.
35.Y.P. Handa, Calorimetric Determinations of the Compositions, Enthalpies of Dissociation, and Heat Capacities in the Range 85 to 270 K for Clathrate Hydrates of Xenon and Krypton. Journal of Chemical Thermodynamics, 1986. 18(9): p. 891-902.
36.Y.P. Handa, Compositions, Enthalpies of Dissociation, and Heat Capacities in the Range 85 to 270 K for Clathrate Hydrates of Methane, Ethane, and Propane, and Enthalpy of Dissociation of Isobutane Hydrate, as Determined by a Heat-Flow Calorimeter. Journal of Chemical Thermodynamics, 1986. 18(10): p. 915-921.
37.T. Nakamura, T. Makino, T. Sugahara, K. Ohgaki, Stability Boundaries of Gas Hydrates Helped by Methane—Structure-H Hydrates of Methylcyclohexane and cis-1,2-Dimethylcyclohexane. Chemical Engineering Science, 2003. 58(2): p. 269-273.
38.T.Y. Makogon, E.D. Sloan, Jr., Phase Equilibrium for Methane Hydrate from 190 to 262 K. Journal of Chemical Engineering Data, 1994. 39(2): p. 351-353.
39.H.D. Nagashima, R. Ohmura, Phase Equilibrium Condition Measurements in Methane Clathrate Hydrate Forming System from 197.3 K to 238.7 K. Journal of Chemical Thermodynamics, 2016. 102: p. 252-256.
40.S. Nakano, M. Moritoki, K. Ohgaki, High-Pressure Phase Equilibrium and Raman Microprobe Spectroscopic Studies on the Methane Hydrate System. Journal of Chemical Engineering Data, 1999. 44(2): p. 254-257.
41.Y. Jin, K. Matsumoto, J. Nagao, W. Shimada, Phase Equilibrium Conditions for Krypton Clathrate Hydrate below the Freezing Point of Water. Journal of Chemical Engineering Data, 2011. 56(1): p. 58-61.
42.V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, A.G. Zavodovsky, Evidence of Liquid Water Formation during Methane Hydrates Dissociation below the Ice Point. Chemical Engineering Science, 2009. 64(6): p. 1160-1166.
43.U. Marboeuf, N. Fray, O. Brissaud, B. Schmitt, D. Bockelée-Morvan, D. Gautier, Equilibrium Pressure of Ethane, Acetylene, and Krypton Clathrate Hydrates below the Freezing Point of Water. Journal of Chemical Engineering Data, 2012. 57(12): p. 3408-3415.
44.M.M. Mooijer-van den Heuvel, C.J. Peters, J. de Swaan Arons, Gas Hydrate Phase Equilibria for Propane in the Presence of Additive Components. Fluid Phase Equilibria, 2002. 193(1): p. 245-259.
45.A.H. Mohammadi, D. Richon, Ice–Clathrate Hydrate–Gas Phase Equilibria for Argon + Water and Carbon Dioxide + Water Systems. Industrial Engineering Chemistry Research, 2011. 50(19): p. 11452-11454.
46.M. Wendland, H. Hasse, G. Maurer, Experimental Pressure−Temperature Data on Three- and Four-Phase Equilibria of Fluid, Hydrate, and Ice Phases in the System Carbon Dioxide−Water. Journal of Chemical Engineering Data, 1999. 44(5): p. 901-906.
47.S.S. Fan, T.M. Guo, Hydrate Formation of CO2-Rich Binary and Quaternary Gas Mixtures in Aqueous Sodium Chloride Solutions. Journal of Chemical Engineering Data, 1999. 44(4): p. 829-832.
48.A. Delahaye, L. Fournaison, S. Marinhas, I. Chatti, J.-P. Petitet, D. Dalmazzone, W. Fürst, Effect of THF on Equilibrium Pressure and Dissociation Enthalpy of CO2 Hydrates Applied to Secondary Refrigeration. Industrial Engineering Chemistry Research, 2006. 45(1): p. 391-397.
49.S. Babaee, H. Hashemi, A.H. Mohammadi, P. Naidoo, D. Ramjugernath, Experimental Measurement and Thermodynamic Modeling of Hydrate Dissociation Conditions for the Argon + TBAB + Water System. Journal of Chemical Engineering Data, 2014. 59(11): p. 3900-3906.
50.S. Babaee, H. Hashemi, A.H. Mohammadi, P. Naidoo, D. Ramjugernath, Experimental Measurement and Thermodynamic Modelling of Hydrate Phase Equilibrium Conditions for Krypton + n-Butyl Ammonium Bromide Aqueous Solution. Journal of Supercritical Fluids, 2016. 107: p. 676-681.
51.Y.A. Dyadin, E.G. Larionov, D.S. Mirinskij, T.V. Mikina, E.Y. Aladko, L.I. Starostina, Phase Diagram of the Xe–H2O System up to 15 kbar. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1997. 28(4): p. 271-285.
52.K. Ohgaki, T. Sugahara, M. Suzuki, H. Jindai, Phase Behavior of Xenon Hydrate System. Fluid Phase Equilibria, 2000. 175(1): p. 1-6.
53.A.H. Mohammadi, D. Richon, Phase Equilibria of Clathrate Hydrates of Tetrahydrofuran + Hydrogen Sulfide and Tetrahydrofuran + Methane. Industrial Engineering Chemistry Research, 2009. 48(16): p. 7838-7841.
54.M.M. Mooijer-van den Heuvel, R. Witteman, C.J. Peters, Phase Behaviour of Gas Hydrates of Carbon Dioxide in the Presence of Tetrahydropyran, Cyclobutanone, Cyclohexane and Methylcyclohexane. Fluid Phase Equilibria, 2001. 182(1): p. 97-110.
55.Y. Seo, S. Lee, H. Lee, Experimental Measurements of Hydrate Phase Equilibria for Carbon Dioxide in the Presence of THF, Propylene Oxide, and 1,4-Dioxane. Journal of Chemical Engineering Data, 2008. 53(12): p. 2833-2837.
56.J.P. Torré, D. Haillot, S. Rigal, R. de Souza Lima, D. C, B. J.-P, 1,3 Dioxolane versus Tetrahydrofuran as Promoters for CO2-hydrate Formation: Thermodynamics Properties, and Kinetics in Presence of Sodium Dodecyl Sulfate. Chemical Engineering Science, 2015. 126: p. 688-697.
57.R. Anderson, A. Chapoy, B. Tohidi, Phase Relations and Binary Clathrate Hydrate Formation in the System H2−THF−H2O. Langmuir, 2007. 23(6): p. 3440-3444.
58.É.G. Larionov, F.V. Zhurko, Y.A. Dyadin, Gas‐Hydrate Packing and Stability at High Pressures. Journal of Structural Chemistry, 2002. 43(6): p. 985-989.
59.H. Yang, S. Fan, X. Lang, Y. Wang, Phase Equilibria of Mixed Gas Hydrates of Oxygen + Tetrahydrofuran, Nitrogen + Tetrahydrofuran, and Air + Tetrahydrofuran. Journal of Chemical Engineering Data, 2011. 56(11): p. 4152-4156.
60.A. Mohammadi, D. Richon, Clathrate Hydrates of Isopentane + Carbon Dioxide and Isopentane + Methane: Experimental Measurements of Dissociation Conditions. Oil Gas Science and Technology – Rev. IFP Energies nouvelles, 2010. 65: p. 879-882.
61.A.H. Mohammadi, D. Richon, Clathrate Hydrate Dissociation Conditions for the Methane + Cycloheptane / Cyclooctane + Water and Carbon Dioxide + Cycloheptane / Cyclooctane + Water Systems. Chemical Engineering Science, 2010. 65(10): p. 3356-3361.
62.A.H. Mohammadi, D. Richon, Phase Equilibria of Clathrate Hydrates of Methyl Cyclopentane, Methyl Cyclohexane, Cyclopentane or Cyclohexane + Carbon Dioxide. Chemical Engineering Science, 2009. 64(24): p. 5319-5322.
63.É. Larionov, E. Aladko, F. Zhurko, A. Likhacheva, A. Ancharov, M. Sheromov, A. Kurnosov, A. Manakov, S. Goryainov, Clathrate Hydrates of Hexagonal Structure III at High Pressures: Structures and Phase Diagrams. Journal of Structural Chemistry, 2005. 46: p. S58-S64.
64.W. Shin, S. Park, D.Y. Koh, J. Seol, H. Ro, H. Lee, Water-Soluble Structure H Clathrate Hydrate Formers. Journal of Physical Chemistry C, 2011. 115(38): p. 18885-18889.
65.Y. Ohfuka, N. Fukushima, Z. Chen, M. Fukuda, S. Takeya, R. Ohmura, Phase Equilibria for Kr Hydrate Formed with 2,2-Dimethylbutane, Methylcyclohexane and 1-Methylpiperidine. Journal of Chemical Thermodynamics, 2018. 117: p. 21-26.
66.P. Skovborg, P. Rasmussen, Comments on: Hydrate Dissociation Enthalpy and Guest Size. Fluid Phase Equilibria, 1994. 96: p. 223-231.
67.C. Smith, A. Barifcani, D. Pack, Helium Substitution of Natural Gas Hydrocarbons in the Analysis of Their Hydrate. Journal of Natural Gas Science and Engineering, 2016. 35: p. 1293-1300.
68.E.D. Sloan, F. Fleyfel, Hydrate Dissociation Enthalpy and Guest Size. Fluid Phase Equilibria, 1992. 76: p. 123-140.
69.J.H. Yoon, Y. Yamamoto, T. Komai, H. Haneda, T. Kawamura, Rigorous Approach to the Prediction of the Heat of Dissociation of Gas Hydrates. Industrial Engineering Chemistry Research, 2003. 42(5): p. 1111-1114.
70.A.T. Bozzo, H.S. Chen, J.R. Kass, A.J. Barduhn, The Properties of the Hydrates of Chlorine and Carbon Dioxide. Desalination, 1975. 16(3): p. 303-320.
71.M.C. Martínez, D. Dalmazzone, W. Fürst, A. Delahaye, L. Fournaison, Thermodynamic Properties of THF + CO2 Hydrates in Relation with Refrigeration Applications. AIChE Journal, 2008. 54(4): p. 1088-1095.
72.S.P. Kang, H. Lee, B.J. Ryu, Enthalpies of Dissociation of Clathrate Hydrates of Carbon Dioxide, Nitrogen, (Carbon Dioxide + Nitrogen), and (Carbon Dioxide + Nitrogen + Tetrahydrofuran). Journal of Chemical Thermodynamics, 2001. 33: p. 513-521.
73.M.B. Rydzy, J.M. Schicks, R. Naumann, J. Erzinger, Dissociation Enthalpies of Synthesized Multicomponent Gas Hydrates with Respect to the Guest Composition and Cage Occupancy. Journal of Physical Chemistry B, 2007. 111(32): p. 9539-9545.
74.J.S. Lievois, R. Perkins, R.J. Martin, R. Kobayashi, Development of an Automated, High Pressure Heat Flux Calorimeter and Its Application to Measure the Heat of Dissociation and Hydrate Numbers of Methane Hydrate. Fluid Phase Equilibria, 1990. 59(1): p. 73-97.
75.S. Kim, S.H. Lee, Y.T. Kang, Characteristics of CO2 Hydrate Formation / Dissociation in H2O + THF Aqueous Solution and Estimation of CO2 Emission Reduction by District Cooling Application. Energy, 2017. 120: p. 362-373.
76.O. Yamamuro, M. Oguni, T. Matsuo, H. Suga, Calorimetric Study on Pure and KOH-Doped Argon Clathrate Hydrates. Journal of inclusion phenomena, 1988. 6(3): p. 307-318.
77.Y.P. Handa, O. Yamamuro, M. Oguni, H. Suga, Low-Temperature Heat Capacities of Xenon and Krypton Clathrate Hydrates. Journal of Chemical Thermodynamics, 1989. 21(12): p. 1249-1262.
78.Y.P. Handa, R.E. Hawkins, J.J. Murray, Calibration and Testing of a Tian-Calvet Heat-Flow Calorimeter Enthalpies of Fusion and Heat Capacities for Ice and Tetrahydrofuran Hydrate in the Range 85 to 270 K. Journal of Chemical Thermodynamics, 1984. 16(7): p. 623-632.
79.M.A. White, M.T. MacLean, Rotational Freedom of Guest Molecules in Tetrahydrofuran Clathrate Hydrate, as Determined by Heat Capacity Measurements. Journal of Physical Chemistry, 1985. 89(8): p. 1380-1383.
80.O. Yamamuro, M. Oguni, T. Matsuo, H. Suga, Calorimetric Study of Pure and KOH-doped Tetrahydrofuran Clathrate Hydrate. Journal of Physics and Chemistry of Solids, 1988. 49(4): p. 425-434.
81.C.K. Chu, P.C. Chen, Y.P. Chen, S.T. Lin, L.J. Chen, Inhibition Effect of 1-Ethyl-3-Methylimidazolium Chloride on Methane Hydrate Equilibrium. Journal of Chemical Thermodynamics, 2015. 91: p. 141-145.
82.C.K. Chu, S.T. Lin, Y.P. Chen, P.C. Chen, L.J. Chen, Chain Length Effect of Ionic Liquid 1-Alkyl-3-Methylimidazolium Chloride on the Phase Equilibrium of Methane Hydrate. Fluid Phase Equilibria, 2016. 413: p. 57-64.
83.C.K. Chu, Application of DSC to Determine the Heat of Dissociation and Phase Boundary of Methane Hydrates in the Presence of Inhibitors and Promoters. PhD. Dissertation, Department of Chemical Engineering, National Taiwan University, 2016.
84.L.K. Chu, Utilizing DSC to Determine the Influence of Guest Molecules on the Dissociation Heat of Gas Hydrates. Master Thesis, Department of Chemical Engineering, National Taiwan University, 2018.
85.W.M. Haynes, D.R. Lide, CRC Handbook of Chemistry and Physics : A Ready-Reference Book of Chemical and Physical Data. 2011, Boca Raton, Fla.: CRC Press.
86.A.R.C. Duarte, A. Shariati, C.J. Peters, Phase Equilibrium Measurements of Structure sH Hydrogen Clathrate Hydrates with Various Promoters. Journal of Chemical Engineering Data, 2009. 54(5): p. 1628-1632.
87.P.J. Back, L.A. Woolf, (p,V,T,x) Measurements for Tetrahydrofuran and {xC4H8O + (1−x)H2O}. Journal of Chemical Thermodynamics, 1998. 30(3): p. 353-364.
88.J. Tse, Thermal Expansion of the Clathrate Hydrates of Ethylene Oxide and Tetrahydrofuran. Journal de Physique Colloques, 1987. 48 (C1): p. C1-543-C1-549.
89.R.B. Roberts, C. Andrikidis, R.J. Tarnish, G.K. White. Proceedings of 10th International Cryogenic Engineering Conference. 1984. Helsinki, Finland.
90.E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical Properties of Fluid Systems, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology: Gaithersburg MD, 20899 https://doi.org/10.18434/T4D303, (retrieved May 4, 2020).
91.Q. Zhang, G.J. Chen, Q. Huang, C.Y. Sun, X.Q. Guo, Q.L. Ma, Hydrate Formation Conditions of a Hydrogen + Methane Gas Mixture in Tetrahydrofuran + Water. Journal of Chemical Engineering Data, 2005. 50(1): p. 234-236.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67094-
dc.description.abstract本研究以高壓差式掃描熱卡計測量添加促進劑之氣體水合物其相邊界與融解熱,探討作為結構H型水合物促進劑之甲基哌啶其甲基位置對氣體水合物之促進效果與融解熱之影響,並與結構II型之促進劑四氫呋喃之結果進行比較。四氫呋喃與甲基哌啶促進劑對氪氣水合物由1至10 MPa、甲烷水合物由5至30 MPa之熱力學促進效果順位一致如下:四氫呋喃 > 1-甲基哌啶 > 2-甲基哌啶 ≥ 3-甲基哌啶;而添加四氫呋喃與甲基哌啶促進劑之氣體水合物其融解熱顯示出相同對壓力依賴的趨勢:融解熱在低壓時隨壓力增加而急遽上升,而當壓力高至能驅使幾乎全部的小孔洞被氣體佔據時則變平緩。當融解熱對壓力的依賴性降低時,融解熱之大小排序皆為:四氫呋喃 > 1-甲基哌啶 > 3-甲基哌啶 ≥ 2-甲基哌啶,可看出對甲基哌啶而言,甲基接在氮原子上時能顯著地使促進效果變強、融解熱增加。值得注意的是添加促進劑之氣體水合物在更換氣體種類後僅移動相邊界與融解熱,對促進效果與融解熱之相對排序並無影響,主要還是由添加劑之分子結構與特性所決定。
有鑑於許多研究在量測氣體水合物之融解熱時會在比合成壓力更低之壓力下進行,而非在氣體水合物合成時的壓力下定壓測量,融解壓力對於融解溫度與融解熱之影響應該被仔細檢驗,因此本研究以甲烷四氫呋喃混合水合物與氬氣四氫呋喃混合水合物,於20、30、35 MPa (合成壓力)合成後在3 MPa (融解壓力)下融解,並與定壓下操作之實驗相互比較以探討合成與融解時的壓力對氣體水合物之融解溫度與融解熱有何影響。高壓差式掃描熱卡計之結果顯示當氣體水合物在壓力與合成壓力相同下融解時,融解溫度與融解熱會因孔洞佔有率提升而隨著合成壓力的增加而上升,然而如20 MPa在大多數的小孔洞被氣體佔據後,更高的合成壓力不再提升孔洞佔有率,使融解溫度與融解熱兩者幾乎維持在定值。另一方面,對於在相同高壓(30 MPa)合成之氣體水合物,在3 MPa下融解之融解熱遠低於在30 MPa下定壓融解之融解熱,為解釋此現象,本研究以狀態方程式與焓圖推論出融解熱差值可能源自於系統於不同溫度下擴張和於不同融解壓力下的熱容差,且後者因為液相的熱容遠大於水合物相的熱容,主要貢獻了大部分的融解熱差值。
zh_TW
dc.description.abstractIn this study, the phase boundary and dissociation heat of gas hydrate in the presence of promoter were determined by high pressure differential scanning calorimeter (HPμDSC). The effect of methyl-substituted position in methylpiperidines (MPDs) as structure H hydrate promoter on the promotion capability and dissociation heat of gas hydrate were investigated and compared with the results of tetrahydrofuran (THF) as structure II hydrate promoter. The thermodynamic promotion capability of THF and MPD promoters on krypton hydrate from 1 to 10 MPa and on methane hydrate from 5 to 30 MPa was consistently in the order of THF > 1-MPD > 2-MPD ≥ 3-MPD. The dissociation heat of gas hydrate in the presence of THF and MPD promoters showed the same tendency of pressure-dependent behavior. The dissociation heat increased dramatically with increasing pressure at low pressures and became level off at high pressures when the pressure was high enough to compel gas molecules occupying almost all the small cavities. When the dissociation heat became less pressure-dependent, the dissociation heat was ranked in the order of THF > 1 MPD > 3 MPD ≥ 2 MPD. It can be seen that for the methylpiperidines, the promotion capability and dissociation heat greatly elevated as the methyl group was linked to nitrogen atom. It was also noteworthy that the change of gas type only shifted the phase boundary and the dissociation heat of gas hydrate in the presence of promoter but had no influence on the order of promotion capability and dissociation heat, which were mainly determined by the molecular structure and property of promoters.
In view of plenty previous researches measured the dissociation heat of gas hydrate at pressure lower than that gas hydrate synthesized at, instead of measuring at hydrate synthesis pressure isobarically. Effect of dissociation pressure on the dissociation temperature and heat should be carefully examined. Thus, in this study methane + THF mixed hydrate and argon + THF mixed hydrate were synthesized at 20, 30, and 35 MPa (synthesis pressure) then the dissociation temperature and heat were measured while the hydrate dissociated at 3 MPa (dissociation pressure). The HPμDSC results showed that when the gas hydrate dissociated at the same pressure as the synthesis pressure, the dissociation temperature and dissociation heat increased along with increasing synthesis pressure due to an increase in the cage occupancy of gas molecules. However, after most small cages were occupied by gas molecules, i.e., 20 MPa, a higher synthesis pressure no longer increased the cage occupancy, both dissociation heat and dissociation temperature maintained almost constant. On the other hand, for the gas hydrate synthesized at a high pressure (e.g. 30 MPa), the dissociation heat of the gas hydrate dissociating at 3 MPa was far lower than that dissociating isobarically at 30 MPa. To explain this phenomenon, the state function and enthalpy diagram were applied in this study, deducing that the difference of dissociation heat may derive from the system expansion at different temperatures and the heat capacity difference between different hydrate dissociation pressures. And the later one mainly contributed to the difference of dissociation heat because the heat capacity of liquid phase was much higher than that of hydrate phase.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:19:44Z (GMT). No. of bitstreams: 1
U0001-1608202019263600.pdf: 4530760 bytes, checksum: 8f40db24fb982234c76c476659077dde (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
摘要 iii
ABSTRACT v
TABLE OF CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Structure and Composition of Gas Hydrate 1
1.2 Application of Phase Boundary of Gas Hydrate 2
1.3 Application of Thermal Properties of Gas hydrate 4
Chapter 2 Literature Review 10
2.1 Phase Rule and Phase Equilibria of Gas Hydrates 10
2.2 Measurement of Dissociation Heat of Gas Hydrate 11
2.3 Measurement of Heat Capacity of Gas Hydrate 13
Chapter 3 Apparatus and Experiment 30
3.1 Apparatus and Sample Preparation 30
3.2 Synthesis and Dissociation Procedures of Gas Hydrate 31
3.3 Determination of Phase Equilibria of Gas Hydrate 33
3.4 Determination of Dissociation Heat of Gas Hydrate 33
Chapter 4 Effect of Methyl-Group Position in Methylpiperidines on Dissociation Temperature and Dissociation Heat of Gas Hydrate 40
4.1 Promotion Effect of MethylPiperidines on Gas Hydrate 41
4.2 Effect of Methyl-group Position in Methylpiperidines on Dissociation Heat of Gas Hydrate. 42
Chapter 5 Effect of Hydrate Synthesis Pressure and Dissociation Pressure on the Dissociation Temperature and Dissociation Heat 55
5.1 Definitions of Path A and Path B 55
5.2 Effect of Hydrate Synthesis Pressure and Dissociation Pressure on the Dissociation Temperature 57
5.3 Effect of Gas Hydrate Synthesis Pressure and Dissociation Pressure on the Dissociation Heat 58
5.4 Difference of Dissociation Heat between Gas Hydrate Dissociating at Different Pressures 60
5.5 Difference of Dissociation Heat from Enthalpy Changes of System Expansion and Heat Capacity Difference 70
Chapter 6 Conclusions 90
REFERENCES 93
dc.language.isoen
dc.title以掃描式熱卡計測量甲基哌啶之甲基位置對氣體水合物融解熱之影響
zh_TW
dc.titleUsing DSC to Determine the Effect of Methyl-Group Position in Methylpiperidines on the Dissociation Heat of Gas Hydratesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳延平(Yan-Ping Chen),李明哲(Ming-Jer Lee),蘇至善(Chie-Shaan Su)
dc.subject.keyword掃描式熱卡計,甲基哌啶,四氫呋喃,熱力學促進劑,融解熱,zh_TW
dc.subject.keyworddifferential scanning calorimeter,methylpiperidine,tetrahydrofuran,thermodynamic promoter,dissociation heat,en
dc.relation.page104
dc.identifier.doi10.6342/NTU202003606
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1608202019263600.pdf
  目前未授權公開取用
4.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved