Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67082
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭仁傑(Jen-Chieh Shiao)
dc.contributor.authorYu Hsiehen
dc.contributor.author謝瑀zh_TW
dc.date.accessioned2021-06-17T01:19:24Z-
dc.date.available2018-05-30
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citationAraki H, Cooper B. and Blouin MS. (2007) Genetic Effects of Captive Breeding Cause a Rapid, Cumulative Fitness Decline in the Wild, Science, Vol. 318(5): 100-102.
Araki H. and Schmid C. (2010) Is hatchery stocking a help or harm? Evidence, limitations and future directions in ecological and genetic surveys, Aquaculture, Vol. 308: S2-S11.
Bell J. (2004) Management of restocking and stock enhancement programs; The need for different approaches. pp. 213-215. IN: K.M. Leber, S. Kitada, H.L. Blankenship and T. Svåsand (eds.) Stock enhancement and sea ranching; evelopments, opportunities and pitfalls, 2nd edition. Blackwell Publishing Ltd, Oxford, UK.
Blanco A., Deudero S. and Box A. (2009) Muscle and scale isotopic offset of three fish species in the Mediterranean Sea: Dentex dentex, Argyrosomus regius and Xyrichtys novacula, Rapid Commun. Mass Spectrom, Vol. 23: 2321-2328.
Blaxter JHS. (2000) The enhancement of marine fish stocks, Advances in Marine Biology, Vol. 38: 2-54.
Bradbury IR., Campana SE. and Bentzen P. (2008) Otolith elemental composition and adult tagging reveal spawning site fidelity and estuarine dependency in rainbow smelt, Marine Ecology Progress Series, Vol. 368: 255-268.
Brown RJ. and Severin KP. (2009) Otolith chemistry analyses indicate that water Sr:Ca is the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish but not for marine fish, Can. J. Fish. Aquat. Sci., Vol. 66: 1790-1808.
Busch TE., Flannery JA., Richey JN. and Stathakopoulos A. (2015) The Relationship Between the Ratio of Strontium to Calcium and Sea-Surface Temperature in a Modern Porites astreoides Coral: Implications for Using P. astreoides as a Paleoclimate Archive, U.S. Geological Survey Open-File Report 2015-1182, 10p.
Cai WJ., Dai M., Wang Y., Zhai W., Huang T., Chen S., Zhang F., Chen Z. and Wang Z. (2004) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea, Continental Shelf Research, Vol. 24: 1301-1319.
Campana SE. and Casselman JM. (1993) Stock Discrimination Using Otolith Shape Analysis, Canadian Journal of Fisheries and Aquatic Sciences, Vol. 50(5): 1062-1083.
Campana SE. and Neilson JD. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, Vol. 42(5): 1014-1032.
Campana SE. (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications, Marine Ecology Progress Series, Vol. 188: 263-297.
Church MR., Ebersole JL., Rensmeyer KM., Couture RB., Barrows FT. and Noakes DLG. (2009) Mucus a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis, Can. J. Fish Aqust. Sci., Vol. 66: 1-5.
Clément M., Chiasson AG., Veinott G. and Cairns DK. (2014) What otolith microchemistry and stable isotope analysis reveal and conceal about anguillid eel movements across salinity boundaries, Oecologia, Vol. 175: 1143-1153.
Conroy JL., Cobb KM., Lynch-Stieglitz J. and Polissar PJ. (2014) Constraints on the salinity–oxygen isotope relationship in the central tropical Pacific Ocean, Marine Chemistry, Vol. 161: 26-33.
Darnaude AM., Sturrock A., Trueman CN., Mouillot D., Eimf, Campana SE. and Hunter E. (2014) Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes? PLoS ONE, Vol. 9(10): e108539.
DeNiro MJ. and Epstein S. (1977) Mechanism of carbon isotope fractionation associated with lipid synthesis, Science, Vol. 197(4300): 261-263.
Deutsch B. and Berth U. (2006) Differentiation of western and eastern Baltic Sea cod stocks (Gadus morhua) by means of stable isotope ratios in muscles and otoliths, J. Appl. Ichthyol., Vol. 22: 538–539.
Dou SZ., Yokouchi K., Yu X., Cao L., Kuroki M., Otake T. and Tsukamoto K. (2012) The migratory history of anadromous and non-anadromous tapertail anchovy Coilia nasus in the Yangtze River Estuary revealed by the otolith Sr:Ca ratio, Environ. Biol. Fish, Vol. 95: 481-490.
Doucett RR., Hooper W. and Power G. (2011) Identification of Anadromous and Nonanadromous Adult Brook Trout and Their Progeny in the Tabusintac River, New Brunswick, by Means of Multiple-Stable-Isotope Analysis, Transactions of the American Fisheries Society, Vol. 128: 278-288.
Elsdon TS., Wells BK., Campana SE., Gillanders BM., Jones CM., Limburg KE., Secor DH., Thorrold SR. and Walther BD. (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences, Oceanography and Marine Biology: An Annual Review, Vol. 46: 297-330
Engstedt O., Engkvist R. and Larsson P. (2013) Elemental fingerprinting in otoliths reveals natal homing of anadromous Baltic Sea pike (Esox lucius L.), Ecology of Freshwater Fish, Vol. 23: 313-321.
Farmer TM., DeVries DR., Wright RA. and Gagnon JE. (2013) Using Seasonal Variation in Otolith Microchemical Composition to Indicate Largemouth Bass and Southern Flounder Residency Patterns across an Estuarine Salinity Gradient, Transactions of the American Fisheries Society, Vol. 142: 1415-1429.
Friedman I., and O'Neil JR. (1977). Data of geochemistry: Compilation of stable isotope fractionation factors of geochemical interest, Vol. 440, US Government Printing Office.
Fry B., Baltz DM., Benfield MC., Fleeger JW., Gace A., Haas HL. and Quinones-Rivera ZJ. (2003) Stable Isotope Indicators of Movement and Residency for Brown Shrimp (Farfantepenaeus aztecus) in Coastal Louisiana Marshscapes, Estuaries, Vol. 26, No. 1: 82-97.
Fuji T., Kasai A., Suzuki KW., Ueno M. and Yamashita Y. (2010) Freshwater migration and feeding habits of juvenile temperate seabass Lateolabrax japonicus in the stratified Yura River estuary, the Sea of Japan, Fish Sci., Vol. 76: 643-652.
Fuji T., Kasai A., Suzuki KW., Ueno M. and Yamashita Y. (2011) Migration ecology of juvenile temperate seabass Lateolabrax japonicus: a carbon stable-isotope approach, Journal of Fish Biology, Vol. 78: 2010-2025.
Fuji T., Kasai A., Ueno M. and Yamashita Y. (2014) Growth and migration patterns of juvenile temperate seabass Lateolabrax japonicus in the Yura River estuary, Japan-combination of stable isotope ratio and otolith microstructure analyses, Environ. Biol. Fish, Vol. 97: 1221-1232.
Fuji T., Kasai A., Ueno M. and Yamashita Y. (2016) Importance of estuarine nursery areas for the adult population of the temperate seabass Lateolabrax japonicus, as revealed by otolith Sr:Ca ratios, Fish. Oceanogr., Vol. 25(4): 448-456.
Geffen AJ. (2012) Otolith oxygen and carbon stable isotopes in wild and laboratoryreared plaice (Pleuronectes platessa), Environ. Biol. Fish, Vol. 95: 419-430.
Gerdeaux D. and Dufour E. (2015) Life history traits of the fish community in Lake Annecy: evidence from the stable isotope composition of otoliths, Knowledge and Management of Aquatic Ecosystems: Vol. 416(35): 1-22.
Gillandersa BM. (2005) Otolith chemistry to determine movements of diadromous and freshwater fish, Aquat. Living Resour, Vol. 18: 291-300.
Hamasaki K. and Kitada S. (2006) A review of kuruma prawn Penaeus japonicus stock enhancement in Japan, Fisheries Research, Vol. 80: 80-90.
Hart LM., Bond MH., May-McNally SL., Miller JA. and Quinn TP. (2015) Use of otolith microchemistry and stable isotopes to investigate the ecology and anadromous migrations of Northern Dolly Varden from the Egegik River, Bristol Bay, Alaska, Environ. Biol. Fish, Vol. 98: 1633-1643.
Heady WN. and Moore JW. (2013). Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia, Vol. 172(1): 21-34.
Herzka SZ. (2005) Assessing connectivity of estuarine fishes based on stable isotope ratio analysis, Estuarine, Coastal and Shelf Science, Vol. 64: 58-69.
Hibino M., Ohta T., Isoda T., Nakayama T. and Tanaka M. (2007) Distribution of Japanese temperate bass, Lateolabrax japonicus, eggs and pelagic larvae in Ariake Bay, Ichthyol Res., Vol. 54: 367-373.
Hilborn, R. (2004) Population management in stock enhancement and sea ranching. pp. 201–211. IN: K.M. Leber, S. Kitada, H. L. Blankenship and T. Svåsand (eds.) Stock enhancement and sea ranching; developments, opportunities and pitfalls, 2nd edition. Blackwell Publishing Ltd, Oxford, UK.
Ikomaa T., Kobayashi H., Tanaka J, Walsh D. and Mannb S. (2003) Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas, International Journal of Biological Macromolecules, Vol. 32: 199-204.
Islam MS., Hibino M., Nakayama K. and Tanaka M. (2006a) Condition of larval and early juvenile Japanese temperate bass Lateolabrax japonicus related to spatial distribution and feeding in the Chikugo estuarine nursery ground in the Ariake Bay, Japan, Journal of Sea Research, Vol. 55: 141-155.
Islam MS., Hibino M. and Tanaka M. (2006b) Distribution and dietary relationships of the Japanese temperate bass Lateolabrax japonicus juveniles with two contrasting copepod assemblages in estuarine nursery grounds in the Ariake Sea, Japan, Journal of Fish Biology, Vol. 68: 569-593.
Islam MS., Ueno M. and Yamashita Y. (2010) Growth-dependent survival mechanisms during the early life of a temperate seabass (Lateolabrax japonicus): field test of the growth-mortality hypothesis, Fish. Oceanogr., Vol. 19(3): 230-242.
Islam MS., Yamashita Y. and Tanaka M. (2011) A review on the early life history and ecology of Japanese sea bass and implication for recruitment, Environ. Biol. Fish, Vol. 91: 389-405.
Jobling M., Johansen SJS., Foshaug H., Burkow IC. and Jørgensen EH. (1998) Lipid dynamics in anadromous Arctic charr, Salvelinus alpinus (L.): seasonal variations in lipid storage depots and lipid class composition, Fish Physiology and Biochemistry, Vol. 18: 225-240.
Kalish JM. (1991) 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects, Marine Ecology Progress Series, Vol. 75: 191-203.
Kelly B., Dempson JB. and Power M. (2006) The effects of preservation on fish tissue stable isotope signatures, Journal of Fish Biology, Vol. 69: 1595-1611.
Kelly JF. (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology, Can. J. Zool., Vol. 78: 1-27.
Kim ST., O'Neil JR., Hillaire-Marcel C. and Mucci A. (2007) Oxygen isotope fractionation between synthetic aragonite and water influence of temperature and Mg2+ concentration, Geochimica et Cosmochimica Acta, Vol. 71: 4704-4715.
Kitagawa T., Ishimura T., Uozato R., Shirai K., Amano Y., Shinoda A., Otake T., Tsunogai U. and Kimura S. (2013) Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature, Marine Ecology Progress Series, Vol. 481: 199-209.
Kraus RT. and Secor DH. (2004) Dynamics of white perch population contingents in the Patuxent river estuary, Maryland, USA, Marine Ecology Progress Series, Vol. 279: 247-259.
Lin IT., Wang CH., Lin SW. and Chen YG. (2011) Groundwater–seawater interactions off the coast of southern Taiwan: Evidence from environmental isotopes, Journal of Asian Earth Sciences, Vol. 41: 250-262.
Liu KK., Kao SJ., Wen LS. and Chen KL. (2007) Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan, Science of the Total Environment, Vol. 382: 103-120.
Matsumiya Y., Mitani T. and Tanaka M. (1982) Changes in Distribution Pattern and Condition Coefficient of the Juvenile Japanese Sea Bass with the Chikugo River Ascending, Bulletin of the Japanese Society of Scientific Fisheries, Vol. 48(2): 129-138.
Morita K., Saito T., Miyakoshi Y., Fukuwaka M., Nagasawa T. and Kaeriyama M. (2006) A review of Pacific salmon hatchery programmes on Hokkaido Island, Japan, ICES Journal of Marine Science, Vol. 63: 1353-1363.
Oshima Y. (1984) Status of Fish Farming and related technological development in the cultivation of aquatic resources in Japan. In: Ie. Liao and R. Hirano (eds.) Proceedings of ROC-JAPAN Symposium on Mariculture, TML coference Proceedings, Vol. 1: 1-11.
Panfili J., Darnaude AM., Vigliola L., Jacquart A., Labonne M. and Gilles S. (2015) Experimental evidence of complex relationships between the ambient salinity and the strontium signature of fish otoliths, Journal of Experimental Marine Biology and Ecology, Vol. 467: 65-70.
Parmentier E., Vandewalle P. and Lagardère F. (2001). Morpho‐anatomy of the otic region in carapid fishes: eco‐morphological study of their otoliths. Journal of Fish Biology, Vol. 58(4): 1046-1061.
Pereira AL., Benedito E. and Sakuragui CM. (2007) Spatial variation in the stable isotopes of 13C and 15N and trophic position of Leporinus friderici (Characiformes, Anostomidae) in Corumbá Reservoir, Brazil, Anais da Academia Brasileira de Ciências, Vol. 79(1): 41-49.
Perga ME. and Gerdeaux D. (2003) Using the 13C and 15N of whitefish scales for retrospective ecological studies: changes in isotope signatures during the restoration of Lake Geneva, 1980–2001, Journal of Fish Biology, Vol. 63: 1197-1207.
Peterson BJ. and Fry B. (1987) Stable isotopes in ecosystem studies, Ann. Rev. Ecol. Syst., Vol. 18: 293-320.
Pinnegar JK. and Polunin NVC. (1999). Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology, Vol. 13(2): 225-231.
Post DM. (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions, Ecology, Vol. 83(3): 703-718.
Reis-Santos P., Tanner SE., França S., Vasconcelos RP., Gillanders BM. and Cabral HN. (2015) Connectivity within estuaries: An otolith chemistry and muscle stable isotope approach, Ocean & Coastal Management xxx, 1-9.
Reis-Santos P., Tanner SE., Vasconcelos RP., Elsdon TS., Cabral HN. and Gillanders BM. (2013) Connectivity between estuarine and coastal fish populations: contributions of estuaries are not consistent over time, Marine Ecology Progress Series, Vol. 491: 177-186.
Sanderson BL., Tran CD., Coe HJ., Pelekis V., Steel EA. and Reichert WL. (2009) Nonlethal Sampling of Fish Caudal Fins Yields Valuable Stable Isotope Data for Threatened and Endangered Fishes, Transactions of the American Fisheries Society, Vol. 138(5): 1166-1177.
Satterfield IV FR. and Finney BP. (2002) Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years, Progress in ceanography, Vol. 53: 231-246.
Schroder SL., Knudsen CM., Pearsons TN., Kassler TW., Young SF., Busack CA. and Fast DE. (2011) Breeding Success of Wild and First-Generation Hatchery Female Spring Chinook Salmon Spawning in an Artificial Stream, Transactions of the American Fisheries Society, Vol. 137: 1475-1489.
Schwarcz HP., Gao Y., Campana S., Browne D., Knyf M. and Brand U. (1998) Stable carbon isotope variations in otolith of Atlantic cod (Gadus morhua), Can. J. Fish. Aquat. Sci., Vol. 55: 1798-1806.
Secor DH., Henderson-Arzapalob A. and Piccoli PM. (1995) Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? Journal of Experimental Marine Biology and Ecology, Vol. 192: 15-33.
Secor DH., Ohta T., Nakayama K. and Tanaka M. (1998) Use of Otolith Microanalysis to Determine Estuarine Migrations of Japanese Sea Bass Lateolabrax japonicus Distributed in Ariake Sea, Fisheries Science, Vol. 64(5): 740-743.
Secor DH. and Rooker JR. (2000) Is otolith strontium a useful scalar of life cycles in estuarine Fishes? Fisheries Research, Vol. 46: 359-371.
Sheu DD., Lee WY., Wang CH., Wei CL., Chen CTA., Cherng C. and Huang MH. (1996) Depth distribution of δl3C of dissolved ECO2 in seawater off eastern Taiwan: effects of the Kuroshio currents and its associated upwelling phenomenon, Continental Shelf Research, Vol. 16(12): 1609-1619.
Shiao JC., Wang SW., Yokawa K., Ichinokawa M., Takeuchi Y., Chen YG. and Shen CC. (2010) Natal origin of Pacific bluefin tuna Thunnus orientalis inferred from otolith oxygen isotope composition, Marine Ecology Progress Series, Vol. 420: 207-219.
Sholto-Douglas AD., Field JG., James AG. and van der Merwe NJ. (1991) 13C/12C and 15N/14N isotope ratios in the southern benguela ecosystem indicators of food web relationships among different size classes of plankton and pelagic fish differences between fish muscle and bone collagen tissues, Marine Ecology Progress Series, Vol. 78: 23-31.
Sinnatamby RN., Dempson JB. and Power M. (2008) A comparison of muscle- and scale-derived δ13C and δ15N across three life-history stages of Atlantic salmon, Salmo salar, Rapid Commun. Mass Spectrom., Vol. 22: 2773-2778.
Solomon CT., Weber PK., Cech JJ., Jr., Ingram BL., Conrad ME., Machavaram MV., Pogodina AR. and Franklin RL. (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation, Can. J. Fish. Aquat. Sci., Vol. 63: 79-89.
Stobutzki IC., Silvestre GT. and Garces LR. (2006) Key issues in coastal fisheries in South and Southeast Asia, outcomes of a regional initiative. Fisheries Research, Vol. 78: 109-118.
Suzuki KW., Kasai A., Nakayama K. and Tanaka M. (2005) Differential isotopic enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration, Can. J. Fish. Aquat. Sci., Vol. 62: 671-678.
Thorrold SR., Campana SE., Jones CM. and Swart PK. (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish, Geochimica et Cosmochimica Acta, Vol. 61(14): 2909-2919.
Walther BD. and Thorrold SR. (2008) Continental-scale variation in otolith geochemistry of juvenile American shad (Alosa sapidissima), Can. J. Fish. Aquat. Sci., Vol. 65: 2623-2635.
Webb SD., Woodcock SH. and Gillanders BM. (2012) Sources of otolith barium and strontium in estuarine fish and the influence of salinity and temperature, Marine Ecology Progress Series, Vol. 453: 189-199.
Willis TJ., Sweeting CJ., Bury SJ., Handley SJ., Brown CJS., Freeman DJ., Cairney DG. and Page MJ. (2013) Matching and mismatching stable isotope (δ13C and δ15N) ratios in fin and muscle tissue among fish species: a critical review, Mar. Biol., Vol. 160: 1633-1644.
Ye F., Deng W., Xie L., Wei G. and Jia G. (2014) Surface water δ18O in the marginal China seas and its hydrological implications, Estuarine, Coastal and Shelf Science, Vol. 147: 25-31.
Zimmerman CE. (2005) Relationship of otolith strontium-to-calcium ratios and salinity: experimental validation for juvenile salmonids, Can. J. Fish. Aquat. Sci., Vol. 62: 88-97.
呂翰駮 (2015) 耳石穩定性同位素與年齡探討太平洋黑鮪的年齡與成長以及其來源,國立台灣大學理學院海洋研究所,碩士論文,共84頁。
林世寰 (2012) 利用耳石元素組成和標識放流實驗研究日本鰻在河川內的洄游環境史及棲地利用特徵,國立台灣大學生命科學院漁業科學研究所,博士論文,共71頁。
林怡美,米泓生,李匡悌 (2012) 穩定性同位素分析在考古學研究上的應用,地質專題,第31卷,第2期,第67-68頁。
林清芬 (2000) 南海及呂宋海峽海水氧同位素組成之研究,國立中山大學海洋地質及化學研究所,碩士論文,共80頁。
翁進興,洪銘昆,吳龍靜,黃建智,吳春基,賴繼昌 (2008) 洄游性魚類標識放流技術之應用,水試專訓,第22期,第33-34頁。
郭金泉 (2009) 台灣放流鯛魚魚苗的迷思,國立台灣海洋大學水產生物科技頂尖研究中心,主題計畫-「利用精液凍結和分子標記育種鯛魚」報告,共2頁。
郭慶老 (2002) 台灣海洋物種之標識放流試驗,台灣海洋學刊第40期,第1號,第13-20頁。
黃家富,劉富光 (2011) 台灣淡水魚類養殖(下),水產試驗所特刊第13號,第九章-七星鱸魚,第165-186頁。
葉秀貞 (2013) 2011年冬季及2012年夏季北南海碳化學參數之分布特徵,國立中山大學海洋地質及化學研究所,碩士論文,共84頁。
鄭力綺 (2016) 吳郭魚代謝性組織與耳石有機物之穩定性同位素分餾,國立台灣大學理學院海洋研究所,碩士論文,共101頁。
謝秀苓 (2008) 2006年夏季台灣周遭海域碳化學參數及二氧化碳通量之空間分布變化,國立中山大學海洋地質及化學研究所,碩士論文,共47頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67082-
dc.description.abstract日本花鱸,又名七星鱸魚,主要分布在中國東海、日本海和台灣海峽一帶,屬廣溫、廣鹽物種。在台灣區域的主要產卵季於冬季,鱸魚在河口產卵後,可能會進入淡水河流中覓食,但是目前對於此魚種的河海遷徙生活史與行為所知有限。此外,各種魚苗放流在台灣實施多年,卻甚少評估效益,主要原因之一是缺乏能夠鑑別養殖放流個體與野生個體的方法與技術。因此本研究藉由分析野生和養殖七星鱸魚的耳石及組織中的穩定性同位素及耳石鍶鈣比,探討台灣周遭海域七星鱸魚的洄游生活史,並辨別鱸魚個體之來源。受到環境食性差異不同影響,養殖樣本不論是肌肉或耳石中的碳同位素值(δ13Cmus: -19.8 ± 0.2 ‰, δ13Coto: -9.1 ± 0.6 ‰)變異和數值均顯著較野生樣本(δ13Cmus: -16.9 ± 1.5 ‰, δ13Coto: -4.9 ± 1.8 ‰)低,為辨別野生和養殖個體來源的關鍵因子。而根據鹽度換算公式(δ18Ow (VSMOW) = 0.18 S – 6.11)所推估出的鹽度範圍約落於0-39 ppt,橫跨了淡水和海水環境。配合耳石年輪推估時序所得的個體生活史鹽度變化可得知:鱸魚於冬季出生後會直接進入淡水和半淡鹹水河口覓食,而部分個體會持續滯留於較高鹽的海域。相同族群間的個體並沒有一個固定的洄游模式。鍶鈣比分析部分,養殖(3.7 ± 0.2 (10-3))和野生樣本(4.7 ± 1.5 (10-3))之間具有顯著差異(K-W test, p = 0.007)。然而,利用耳石氧同位素所估計之鹽度變化和耳石中的鍶鈣比變化並不完全一致。相較於鍶鈣比和耳石氧同位素,估計鹽度時序圖能更完整地呈現個體在不同生活史階段中,於淡水、半淡鹹水和海水棲地之間的變化,有效建立該魚種的河海洄游生活史,並提供將來相關漁業管理單位對於放流魚苗的策略規劃和個體辨識之參考。zh_TW
dc.description.abstractJapanese sea bass (Lateolabrax japonicas) widely distributed from Japan to the South China Sea may show diadromous migration. However, the migratory behaviors of this species are rarely studied and still unclear. Japanese sea bass is a food fish providing from fish farming or fishery catch. Stable isotopic analysis of otoliths and muscles were conducted to clarify the habitat use of wild Japanese sea bass and to discriminate the wild population from cultured fish. Otolith δ18O values and water temperature during the corresponding period were used to predict the salinity experienced by the fish. The estimated salinity profiles suggested some Japanese sea bassentered the estuaries and rivers to forage during different life stage. However, some fish completely resided in the marine environment. The stable isotopic composition were more variable in wildfish (δ18O: -3.0 ± 1.3 ‰; δ13C: -4.9 ± 1.8 ‰, n = 18) than in the reared fish (δ18O: -4.1 ± 0.3 ‰; δ13C: -9.1 ± 0.6 ‰, n = 7). In addition,the stable isotope composition of otolith (K-W test, δ18Ooto: p = 0.025; δ13Coto: p = 0.001) and muscle(K-W test, δ15Nmus: p = 0.036; δ13Cmus: p < 0.001) were significantly different between the hatchery and wild fish.These results suggested that Japanese sea bass can use diverse habitats from rivers, estuaries to oceans. The stable isotopic compositions of otoliths and muscles are useful tools to distinguish between wild and aquaculture fish.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:19:24Z (GMT). No. of bitstreams: 1
ntu-106-R04241211-1.pdf: 5187089 bytes, checksum: 9747c7cf3ff000c89905f2cb4fd7b683 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝i
摘要ii
目錄iv
表格目錄vi
圖目錄vii
附錄目錄ix
壹、前言1
1.1 七星鱸魚(Lateolabrax japonicus)1
1.2 養殖放流發展與評估1
1.3 耳石與生活史之研究4
1.4 代謝性組織的穩定性同位素分析5
1.5 研究假設與目的5
貳、材料方法7
2.1 採樣地點7
2.2 肌肉及鱗片樣本處理及分析7
2.2.1 肌肉及鱗片樣本製備7
2.2.2 穩定性碳、氮穩定同位素分析7
2.3 耳石樣本處理及分析8
2.3.1 耳石樣本製備8
2.3.2 耳石穩定性碳、氧同位素分析8
2.3.3 耳石微量化學元素分析10
2.4 估計鹽度剖面圖11
2.4.1 水樣本採集和氧同位素分析11
2.4.2 鹽度剖面圖12
2.5 統計分析13
2.5.1 二次判別分析14
叁、結果15
3.1 肌肉及鱗片中碳、氮穩定性同位素和個體成長之相關性15
3.1.1 肌肉及鱗片穩定性碳同位素15
3.1.2 肌肉及鱗片穩定性氮同位素16
3.1.3 肌肉穩定性同位素與體長、體重之相關性16
3.2 野生和養殖樣本耳石碳、氧同位素差異17
3.2.1 耳石穩定性碳、氧同位素18
3.2.2 耳石碳、氧同位素之相關性18
3.2.3 去除代謝性影響之耳石碳同位素差異21
3.3 野生和養殖樣本耳石鍶鈣比(Sr/Ca)22
3.4 估計鹽度剖面圖23
3.4.1 鹽度剖面圖23
3.4.2 鹽度剖面圖和鍶鈣比時序變化之比較24
3.5 二次判別分析24
肆、討論26
4.1 七星鱸魚洄游生活史之探討26
4.1.1 耳石與肌肉穩定性同位素26
4.1.2 鍶鈣比變化和估計鹽度剖面圖之比較27
4.2 野生和養殖個體辨別32
4.2.1 組織穩定性同位素32
4.2.2 耳石穩定性同位素34
4.2.3 判別分析之應用37
伍、結論39
參考文獻40
附錄一、利用Micromill刮取耳石粉末之採樣線繪製。102
附錄二、利用Micromill刮取耳石粉末之溝槽繪製。103
附錄三、利用EPMA測量耳石微量元素之採樣線(黑色實線)位置。104
附錄四、貝類殼體穩定性碳氧同位素值環境的關聯示意圖。105
附錄五、台灣地下水監測井與水質潛勢分布(來源:行政院環保署)。106
表1、不同捕獲地點之鱸魚組別、樣本數、標準體長、體重、捕獲地點及捕獲日期。49
表2、不同捕獲地點之鱸魚組別、樣本數、組織碳、氮同位素、標準體長及體重。50
表3、Kruskal-Wallis test於肌肉和鱗片的碳、氮同位素值;耳石各生活史階段平均碳、氧同位素值和去除代謝性碳源的耳石碳同位素值之統計結果。51
表4、事後檢定(Dunn‘s post hoc test)於肌肉、鱗片同位素和耳石各生活史階段平均之統計結果。52
表5、各組間個體肌肉和鱗片碳、氮同位素之相關性分析(Pearson’s correlation test)。53
表6、各組間個體肌肉和鱗片碳、氮同位素和體長、體重之相關性分析Pearson’s correlation test)結果。54
表7、不同捕獲地點之鱸魚組別、其樣本數、整顆耳石平均、冬季平均、夏季平均和核心碳、氧同位素值。55
表8、鱸魚耳石於夏季、冬季、全顆平均和核心處之碳、氧同位素和耳石去除代謝性碳源後之碳、氧同位素相關性分析(Pearson’s correlation test)結果。56
表9、不同捕獲地點之鱸魚組別其樣本數、肌肉碳同位素、整顆耳石平均、冬季平均、夏季平均和核心碳同位素值;和去除代謝性影響碳源後的各組碳同位素值。57
表10、各組別鱸魚耳石利用EPMA測量之鍶鈣比平均值結果58
表11、Kruskal-Wallis test於各組別鱸魚之鍶鈣比統計結果59
表12、事後檢定(Dunn’s post hoc test)於各組鱸魚鍶鈣比之統計結果。60
表13、於各測站淡水河河水所測得之鹽度和氫、氧同位素測量值和校正值。61
表14、利用二次判別分析,辨別三組別鱸魚或野生和兩野生鱸魚之成功率。62
圖1、各組別鱸魚採樣地點。63
圖2、淡水河河水樣採樣地點。64
圖3、各組別鱸魚肌肉和鱗片碳同位素盒狀圖。65
圖4、各組別鱸魚肌肉和鱗片氮同位素盒狀圖。66
圖5、養殖鱸魚肌肉、鱗片和餌料中的碳、氮同位素盒狀圖。67
圖6、各組別鱸魚肌肉和鱗片碳、氮同位素相關性散佈圖。68
圖7、各組別鱸魚肌肉和鱗片碳、氮同位素和標準體長、體重相關性散佈圖。(a)氮同位素和標準體長之相關性;(b)氮同位素和體重之相關性;(c)碳同位素和標準體長之相關性;(d)碳同位素和體重之相關性。69
圖8、養殖樣本(R)耳石氧同位素時序圖。70
圖9、淡水樣本(D)耳石氧同位素時序圖。72
圖10、馬祖樣本(M)耳石氧同位素時序圖。74
圖11、養殖樣本耳(R)石碳同位素時序圖。76
圖12、淡水鱸魚(D)耳石碳同位素時序圖。78
圖13、馬祖鱸魚(M)耳石碳同位素時序圖。80
圖14、各組別鱸魚耳石碳同位素盒狀圖。(a)全顆耳石平均;(b)耳石冬季平均值;(c)耳石夏季平均值;(d)耳石核心值。82
圖15、各組別鱸魚耳石氧同位素盒狀圖。(a)全顆耳石平均值;(b)耳石冬季平均值;(c)耳石夏季平均值;(d)耳石核心值。83
圖16、各組別鱸魚耳石碳、氧同位素相關性散佈圖。(a)全顆耳石平均;(b)耳石冬季平均值;(c)耳石夏季平均值;(d)耳石核心值。84
圖17、各組別鱸魚去除代謝性碳源之耳石碳同位素盒狀圖。(a)全顆耳石平均;(b)耳石冬季平均值;(c)耳石夏季平均值;(d)耳石核心值。85
圖18、各組別鱸魚去除代謝性碳源之耳石碳同位素和氧同位素相關性散佈圖。(a)全顆耳石平均;(b)耳石冬季平均值;(c)耳石夏季平均值;(d)耳石核心值。86
圖19、各組別鱸魚耳石鍶鈣比盒狀圖。87
圖20、養殖鱸魚(R)樣本鍶鈣比時序圖。88
圖21、淡水鱸魚(D)樣本鍶鈣比時序圖。89
圖22、馬祖鱸魚(M)樣本鍶鈣比時序圖。91
圖23、淡水河河水氫、氧同位素之相關性。93
圖24、淡水河河水氧同位素和實際測量鹽度之相關性。(a)淡水河口;(b)前人文獻資料。94
圖25、淡水鱸魚樣本(D)估計鹽度剖面圖。95
圖26、馬祖鱸魚樣本(M)估計鹽度剖面圖。97
圖27、三組別鱸魚利用耳石碳、氧同位素判別分析結果。99
圖28、野生和養殖鱸魚利用耳石碳、氧同位素判別分析結果。100
圖29、野生和養殖鱸魚利用肌肉碳、氮同位素判別分析結果。101
dc.language.isozh-TW
dc.title以穩定性同位素分析解析七星鱸魚之棲地利用與辨識養殖和野生個體zh_TW
dc.titleApplication of isotopic analysis to reconstruct habitat use of Japanese sea bass (Lateolabrax japonicas) and discrimination from reared fishen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王佳惠(Chia-Hui Wang),林曉武(Saul-wood Lin)
dc.subject.keyword耳石,七星鱸魚,鹽度時序變化圖,微量元素,穩定性同位素分析,zh_TW
dc.subject.keywordotolith,Japanese sea bass,estimated salinity profile,microelement,stable isotope analysis,en
dc.relation.page108
dc.identifier.doi10.6342/NTU201702993
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
5.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved