請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67081
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹穎雯(Yin-Wen Chan) | |
dc.contributor.author | Chia-Chen Hsu | en |
dc.contributor.author | 許家禎 | zh_TW |
dc.date.accessioned | 2021-06-17T01:19:22Z | - |
dc.date.available | 2017-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-11 | |
dc.identifier.citation | [1] 王品方,「水泥砂漿中鋼筋腐蝕之臨界氯離子濃度探討」,碩士論文,國立臺灣大學土木工程研究所,民國 102年。
[2] 林茜如,「環境條件對混凝土結構物表面氯離子濃度入滲行為之研究」,碩士論文,國立臺灣大學土木工程研究所,民國 102年。 [3] 何季軒,「以貯鹽試驗探討鋼筋混凝土之臨界氯離子濃度」,碩士論文,國立臺灣大學土木工程研究所,民國104年。 [4] 鄭誠竣,「不同靜水壓力下混凝土之氯離子傳輸行為」,碩士論文,國立臺灣大學土木工程研究所,民國105年。 [5] 陳泰誠,「以貯鹽試驗探討鋼筋混凝土之氯離子擴散及鋼筋腐蝕」,碩士論文,國立臺灣大學土木工程研究所,民國105年。 [6] X. Wu, L. Xu, Q. Yang, S. Huang, “The Diffusion Squation of Chloride Ions in Cement Mortar”, Trans Shanghai Build Materials Collection Vol. 4, pp. 364-372, 1991. [7] “Chloride Resistance of Concrete”, Cement Concrete & Aggregates, Australia, 2009. [8] A. M. Neville, “Properties of Concrete”, 4th Ed, Longman, New York, 1996. [9] O. G. Rodriguez and R. D. Hooton, “Influence of Cracks on Chloride Ingress into Concrete”, Materials Journal Vol. 100, pp. 120-126, 2003. [10] 內政部建築研究所,「快速氯離子穿透試驗於含飛灰爐石混凝土耐久性能評估之研究」,協同研究報告,民國103年。 [11] 賴正義,「高飛灰量混凝土性質」,台電工程月刊,第 551 期,民國八十三年。 [12] CNS 3036,「波特蘭水泥混凝土用飛灰及天然或煆燒卜作嵐摻合物」,中國國家標準,2009。 [13] Larsen, C.K.” Chloride binding in concrete,” Norwegian University of Science and Technology, 1998. [14] Tang, L., Nilsson, L.O., “Chloride binding capacity and binding isotherms of OPC pastes and mortars,” Cement and Concrete Research, vol. 23, pp.247–253, 1993. [15] P. Lambert, C. L. Page, N. R. Short, “Pore solution Chemistry of the Hydrated System Tricalcium Silicate/Sodium Chloride/Water”, Cement and Concrete Research, Vol. 15, pp. 675-680, 1985. [16] Rasheeduzzafar, H. S. Ehtesham, S. S. Al-saadoun, “Effect of Tricalcium Aluminate Content of Cement on Chloride Binding and Corrosion of Reinforcing Steel in Concrete,” ACI Materials Journal, pp. 3-12, 1992. [17] R. K. Dhir, M. A. K. El-Mohr, T. D. Dyer, “Chloride binding in GGBS concrete”, Cement and Concrete Research, Vol. 26, pp. 1767-1776, 1996. [18] L. Rui, C. Yuebo, W. Changyi, H. Xiaoming, “Study of chloride binding and diffusion in GGBS concrete”, Cement and Concrete Research, Vol. 33, pp. 1-7, 2003. [19] U. Angst, B. Elsener, C. K. Larsen, Q. Vennesland, “Critical chloride content in reinforced concrete-A review”, Cement and Concrete Research, Vol. 39, pp. 1122-1138, 2009. [20] J. M. Frederiksen, “Chloride thresold values for service life design”, Second International RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete, pp. 397-414, 2000. [21] M. D. A. Thomas and J. D. Matthews, “Performance of PFA concrete in a marine environment-10 years results”, Cement and Concrete Composites, Vol. 26, pp. 5- 20, 2004. [22] 秋山充良、伊東佑香、鈴木基行,「鋼筋混凝土構造物於鹽害環境下耐久可靠度設計之相關基礎研究」,日本土木學會論文集E,第62卷,第2期,地385-401頁,2006。 [23] 日本土木學會,「混凝土標準示方書(維持管理編)」,2001。 [24] EN 206-1, “Concrete-Part 1:Specification, performance, production and conformity”, 2000. [25] Life 365, “Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of reinforced concrete exposed to chlorides”, Version 2.2.1, 2014. [26] J. P. Arsenault、J. P. Bigas,“Determination of chloride diffusion coefficient using two different steady-state method:influence of concentration gradient,” Chloride Penetration into Concrete, Proceedings of the International RILEM Workshop, pp. 150-160, 1993. [27] M. D. A. Thomas and P. B. Bamforth, “Modelling Chloride Diffusion in Concrete Effect of Fly ash and slag,” Cement and Concrete Research, Vol.29, pp. 487-495, 1999. [28] K. Hong, R.D. Hooton ,“Effect of cyclic chloride exposure on penetration of concrete cover,” Cement and Concrete Research, Vol.29, pp. 1379-1386,1999. [29] 徐港、徐可、蘇義彪、王誼敏,「不同乾溼制度下氯離子在混凝土中的傳輸特性」,建築材料學報,第17卷第1期,2014。 [30] Chunhua Lu, Yuan Gao, Zhaowei Cui and Ronggui Liu, “Experimental analysis of Chloride Penetration into Concrete Subjected to Drying-Wetting Cycles,”ASCE,2015. [31] Yanjuan Chen, “Resistance of concrete against combined attack of chloride and sulfate under drying–wetting cycles,” Construction and Building Materials, Vol.106, pp. 650-658,2016. [32] Peng Liu, Zhiwu Yu, Zhaohui Lua,Ying Chen, Xiaojie Liu, “Predictive convection zone depth of chloride in concrete under chloride environment,” Cement and Concrete Composites, Vol.72, pp. 257-267,2016. [33] 吳建國、黃然、梁明德,「混凝土橋樑鹽分腐蝕問題之研究」,交通台灣區國道新建工程局,民國82年。 [34] M. Collepardi, A. Marcialis, R. Turriziani, “Penetration of chloride ions into cement pastes and concretes”, Journal of the American Ceramic Society, Vol. 55, Issue 10, 99. 534-535, 1972. [35] P. S. Mangat and B. T. Molloy, “Prediction of long term chloride concentration in concrete”, Materials and Structures, Vol. 27, Issue 6, pp. 338-346, 1994. [36] K. Y. Ann、H. W. Song, “Chloride threshold level for corrosion of steel in concrete”, Corrosion Science Vol. 49, pp. 4113-4133, 2007. [37] E. Meck, V. Sirivivatnanon, “Field indicator of chloride penetration depth”, Cement and Concrete Research, Vol. 33,pp. 1113-1117, 2003. [38] 李旺達,「探討比色法中顏色變化界面之氯離子濃度對混凝土非穩態氯離子傳輸係數之影響」,碩士論文,國立臺灣海洋大學材料工程研究所,民國95年。 [39] 翁亨銓,「取樣方式對量測硬固混凝土氯離子含量檢測之影響」,碩士論文,國立臺灣海洋大學材料工程研究所,民國103年。 [40] Life 365, “Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of reinforced concrete exposed to chlorides”,Silica Fume Association,2008,8. [41] Berke N S,Hhcks M C, “Predicting chloride profiles in concrete”, Corrosion Engineering ,pp. 234-239,1994. [42] 施惠生,「混凝土中氯離子遷移的影響因素研究」,建築材料學報,2004。 [43] Nevillae A, “ Chloride attack of reinforce concrete:an overview”, Materials and Structure,1995. [44] 姬永生、袁迎曙,「乾溼循環作用下氯離子在混凝土中的侵蝕過程分析」,工業建築,2006。 [45] 張慶章、黃慶華、張傳平、顧祥林,「海水潮汐區混凝土氯鹽侵蝕加速試驗方法研究」,同濟大學建築工程系,2010。 [46] 徐強、俞海勇,「大型海工混凝土結構耐久性研究與實踐」,北京:中國建築工業出版社,2008。 [47] Mohammad Shekarchi,Mohsen Tadayon, “Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone”, University of Tehran, Iran,2016. [48] Life-365 Consortium III, “Life-365 Service Life Prediction Model”, Life-365 v.2.2.1 User’s Manual,2014. [49] 龍廣成、邢峰、余志武等,「氯離子在混凝土中的沉積特性研究」,深圳大學學報理工版,2008。 [50] 馮乃謙、邢峰,「混凝土與混凝土結構的耐久性」,北京:機械工業出版社,2005。 [51] 陳傳、許宏發,「考慮乾溼交替影響的氯離子侵入混凝土模型」,哈爾濱工業大學學報,2006。 [52] 金傳良、趙羽習,「混凝土結構耐久性」,北京:科學出版社,2002。 [53] 牛荻濤,「混凝土結構耐久性與壽命預測」,北京:科學出版社,2003。 [54] Conciatori, D., Sadouki, H., and Brühwiler, E. “Capillary suction and diffusion model for chloride ingress into concrete”, Cement and Concrete Research, pp. 1401-1408,2008. [55] Structural Concrete,“Volume 3:Textbook on behaviour, design and performance”,1990. [56] Albert K.H. Kwan, Henry H.C. Wong,“Durability of Reinforced Concrete Structures”, 2005. [57] S. L. Lee, S. F. Wong, S. Swaddiwudhipong, T. H. Wee and Y. H. Loo, “Acelerated test of ingress of chloride ions in concrete under pressure and concentration gradients”, Magazine of Concrete Research, Vol. 48, pp. 15-25, 1996. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67081 | - |
dc.description.abstract | 台灣位處亞熱帶且四面環海,沿海構造物容易因為海洋鹽分的侵入導致鋼筋受到腐蝕,故了解氯離子侵入混凝土的機理對於混凝土之耐久性設計與鋼筋保護層厚度的選取至為重要。
沿海構造物中,位處潮間帶及浪濺區等有乾溼循環特性的部分經相關研究指出為最容易受氯鹽侵蝕的區域。考量實際海事工程多採用低水膠比之混凝土設計構造物,本研究選擇水膠比0.45的混凝土,搭配不同卜作嵐材料之添加,探討貯鹽試驗(P組)與兩組乾溼循環試驗(C2與C3組)氯離子侵入情形。最後以「氯離子侵入深度」、「氯離子擴散係數」與「氯離子總侵入量」等評估指標來比較貯鹽試驗與乾溼循環試驗氯離子侵入現象的差異。 氯離子於貯鹽試驗下之主要傳輸機制為擴散作用,一般可用擴散方程式來描述氯離子於混凝土中之分布情形;至於乾溼循環試驗,氯離子的侵入主要為表層毛細吸附作用與深層擴散作用聯合貢獻,此部分學者們則採取含表層對流區效應之擴散方程式來描述。 本研究為比較貯鹽試驗與乾溼循環試驗在氯離子侵入深度上的差異,特別針對文獻上之對流區試驗值作迴歸分析,搭配擴散方程式與含表層對流區效應之擴散方程式,可建立貯鹽試驗與乾溼循環試驗氯離子侵入深度模型。由四個試驗齡期的結果可知,試驗值與侵入深度模型高度擬合,顯示此侵入深度模型的良好預測性。 另外由試驗結果可知本研究六個配比中,045S40與045S50兩組不論是在貯鹽試驗或乾溼循環試驗方面,在「氯離子侵入深度」、「氯離子擴散係數」與「氯離子總侵入量」等評估指標上表現最佳。 | zh_TW |
dc.description.abstract | Taiwan is located in the subtropical and surrounded by the sea. Due to the invasion of salt, it may lead to corrosion of steel in the coastal structures. As a result, understanding the mechanism of chloride intrusion into the concrete for the durability of concrete design and thickness of the protective layer is important.
Coastal structures situated in the tidal zone and splash zone have been identified as being the most susceptible to salt erosion. Considering the practical marine engineering, it often uses low water-cement ratio of concrete to design structures. This study selected concrete with a water-cement ratio of 0.45 and with the addition of different pozzolan materials to explore the transmission behavior of chloride ions in salt ponding test(P group) and drying-wetting cycle test(C2 and C3 groups). Finally, using the evaluation index of 'chloride ion invasion depth', 'chloride ion diffusion coefficient' and 'total amount of chloride ion invasion' to judge the difference of chloride ion invasion. The main transport mechanism of chloride ion under salt ponding test is diffusion. Generally, it can use the diffusion equation to describe the distribution of chloride ions in concrete. As for the drying-wetting cycle test, The invasion of chloride ions is mainly due to the contribution of capillary adsorption and diffusion. Some scholars use the modified diffusion equation taking into account the convection zone to describe the transmission of chloride ion under drying-wetting cycle test. In order to compare the difference between the salt ponding test and the drying-wetting cycle test on the invasion depth of chloride ions, the regression analysis was carried out for the experimental values of the convection zone in the literature. By using the diffusion equation with the modified diffusion equation, we can establish the model of the chloride ion invasion for both salt ponding test and drying-wetting cycle test. It can be seen that the experimental data from the four test ages is highly fitted with the invasive depth model. In other words, it shows good predictability in this invasive depth model. In addition, the experimental results show that in the six mixes, 045S40 and 045S50 perform well in some index of evaluation such as 'depth of chloride ion invasion', 'chloride ion diffusion coefficient' and 'total amount of chloride ion'. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:19:22Z (GMT). No. of bitstreams: 1 ntu-106-R04521237-1.pdf: 5499599 bytes, checksum: a6a4893377df45155fa25b647d64bcac (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目錄
誌謝 i 摘要 ii Abstract iii 目錄 v 表目錄 ix 圖目錄 xi 照片目錄 xiv 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 研究方法與內容 1 第二章 文獻回顧 3 2.1 混凝土內的氯離子 3 2.1.1 氯離子來源 3 2.1.2 氯離子存在型態 3 2.2 氯離子於混凝土中的傳輸機制 4 2.2.1 擴散作用 4 2.2.2 毛細作用 4 2.2.3 滲透作用 5 2.2.4 複合傳輸機制 5 2.3 卜作嵐材料對混凝土耐久性的影響 6 2.3.1 爐石 6 2.3.2 飛灰 7 2.4 膠結材料固結氯離子的能力 7 2.4.1 水泥的氯離子固結能力 8 2.4.2 卜作嵐材料的氯離子固結能力 8 2.5 臨界氯離子濃度 8 2.6 混凝土氯離子耐久性試驗 11 2.6.1 貯鹽試驗(Salt Ponding Test) 11 2.6.2 乾溼循環試驗(Drying-wetting Cycles Test) 11 2.7 氯離子在混凝土中的擴散行為 12 2.7.1 擴散方程式 12 2.7.2 擴散係數之時間效應 13 2.8 乾溼循環下氯離子在混凝土中之傳輸特性 13 2.8.1 對流區的形成 13 2.8.2 含對流區效應的擴散方程式 14 2.9 硬固混凝土氯離子濃度檢測 14 2.9.1 水溶法 14 2.9.2 比色法 15 第三章 乾溼循環試驗整理 17 3.1 乾溼循環機制的參數選取 17 3.1.1 國外乾溼循環試驗的參數選取 17 3.1.2 本研究乾溼循環試驗的參數選取 21 3.2 貯鹽試驗和乾溼循環試驗的比較 21 3.2.1 氯離子侵入基理 21 3.2.2 氯離子濃度-深度分布圖 23 3.2.3 擴散係數 24 3.2.4 表面氯離子濃度 25 3.3 文獻對流區之迴歸分析 27 第四章 實驗計畫 30 4.1 實驗內容與方法 30 4.2 試驗材料 32 4.3 試驗設備 38 4.4 混凝土拌和流程 45 4.5 抗壓強度試驗 45 4.5.1 試驗說明 45 4.5.2 試驗試體 46 4.5.3 試驗方法 46 4.6 貯鹽試驗 46 4.6.1 試驗說明 46 4.6.2 試驗試體 46 4.6.3 試驗方法 46 4.7 乾溼循環試驗 47 4.7.1 試驗說明 47 4.7.2 試驗試體 47 4.7.3 試驗方法 47 4.8 水溶性氯離子濃度滴定試驗 49 4.8.1 試驗說明 49 4.8.2 試驗取樣 49 4.8.3 試驗方法 50 4.9 比色法 50 4.9.1 試驗說明 50 4.9.2 試驗方法 51 第五章 試驗結果與綜合分析 53 5.1 前言 53 5.2 抗壓強度試驗 53 5.2.1 卜作嵐材料對抗壓強度之影響 53 5.2.2 小結 54 5.3 氯離子侵入深度模型與比色法試驗結果 55 5.3.1 模型之氯離子侵入深度定義 55 5.3.2 貯鹽試驗氯離子侵入深度模型 56 5.3.3 乾溼循環試驗氯離子侵入深度模型 57 5.3.4 比色法試驗結果與乾溼機制對氯離子侵入深度之影響 59 5.3.5 貯鹽與乾溼循環試驗氯離子侵入深度模型綜合分析 59 5.3.6 有效浸泡時間對氯離子侵入深度之影響 60 5.3.7 卜作嵐材料對氯離子侵入深度之影響 61 5.4 自由氯離子含量試驗結果 66 5.5 氯離子擴散係數 83 5.5.1 卜作嵐材料對氯離子擴散係數之影響 83 5.5.2 擴散係數時間效應與乾溼循環機制對氯離子擴散係數之影響 84 5.6 氯離子總侵入量 96 5.6.1 卜作嵐材料對氯離子總侵入量之影響 96 5.6.2 乾溼循環機制對氯離子總侵入量之影響 96 第六章 結論與建議 100 6.1 結論 100 6.2 建議 101 參考文獻 102 | |
dc.language.iso | zh-TW | |
dc.title | 乾溼循環下氯離子於混凝土中之傳輸行為探討 | zh_TW |
dc.title | Discussion of chloride ions in concrete under drying-wetting cycles | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖文正(Wen-Cheng Liao),楊仲家(Chung-Chia Yang) | |
dc.subject.keyword | 混凝土,氯離子,貯鹽試驗,乾溼循環試驗,擴散係數,氯離子侵入深度模型, | zh_TW |
dc.subject.keyword | concrete,chloride ion,ponding test,drying-wetting cycle test,diffusion coefficient,chloride ion invasion depth model, | en |
dc.relation.page | 107 | |
dc.identifier.doi | 10.6342/NTU201703029 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。