Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67079
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃心豪(Hsin-Haou Huang)
dc.contributor.authorPo-Jung Chenen
dc.contributor.author陳柏戎zh_TW
dc.date.accessioned2021-06-17T01:19:19Z-
dc.date.available2022-09-07
dc.date.copyright2017-09-07
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citation[1] 臺灣電力公司, '臺電歷年發電量佔比,' http://www.taipower.com.tw/content/new_info/new_info-c37.aspx?LinkID=13, 2017.
[2] O. Abah, J. Rossnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, 'Single-ion heat engine at maximum power,' Physical Review Letters, vol. 109, p. 203006, 2012.
[3] J. B. Pendry, D. Schurig, and D. R. Smith, 'Controlling electromagnetic fields,' Science, vol. 312, pp. 1780-1782, 2006.
[4] G. W. Milton, M. Briane, and J. R. Willis, 'On cloaking for elasticity and physical equations with a transformation invariant form,' New Journal of Physics, vol. 8, p. 248, 2006.
[5] 黄吉平, '奇妙的热超构材料,' Physics Teacher, vol. 37, pp. 71-74, 2016.
[6] M. Raza, Y. Liu, E. H. Lee, and Y. Ma, 'Transformation thermodynamics and heat cloaking: a review,' Journal of Optics, vol. 18, p. 044002, 2016.
[7] J. Li, Y. Gao, and J. Huang, 'A bifunctional cloak using transformation media,' Journal of Applied Physics, vol. 108, p. 074504, 2010.
[8] M. Mir, M. N. Ali, J. Sami, and U. Ansari, 'Review of mechanics and applications of auxetic structures,' Advances in Materials Science and Engineering, vol. 2014, 2014.
[9] Y. Tang and J. Yin, 'Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility,' Extreme Mechanics Letters, vol. 12, pp. 77-85, 2017.
[10] U. Leonhardt, 'Optical conformal mapping,' Science, vol. 312, pp. 1777-1780, 2006.
[11] N. Stenger, M. Wilhelm, and M. Wegener, 'Experiments on elastic cloaking in thin plates,' Physical Review Letters, vol. 108, p. 014301, 2012.
[12] F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, 'DC electric invisibility cloak,' Physical Review Letters, vol. 109, p. 053902, 2012.
[13] R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, 'Experiments on transformation thermodynamics: molding the flow of heat,' Physical Review Letters, vol. 110, p. 195901, 2013.
[14] D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, and A. Starr, 'Metamaterial electromagnetic cloak at microwave frequencies,' Science, vol. 314, pp. 977-980, 2006.
[15] C. Fan, Y. Gao, and J. Huang, 'Shaped graded materials with an apparent negative thermal conductivity,' Applied Physics Letters, vol. 92, p. 251907, 2008.
[16] T. Chen, C.-N. Weng, and J.-S. Chen, 'Cloak for curvilinearly anisotropic media in conduction,' Applied Physics Letters, vol. 93, p. 114103, 2008.
[17] S. Guenneau, C. Amra, and D. Veynante, 'Transformation thermodynamics: cloaking and concentrating heat flux,' Optics Express, vol. 20, pp. 8207-8218, 2012.
[18] S. Narayana and Y. Sato, 'Heat flux manipulation with engineered thermal materials,' Physical Review Letters, vol. 108, p. 214303, 2012.
[19] S. Narayana, S. Savo, and Y. Sato, 'Transient heat flux shielding using thermal metamaterials,' Applied Physics Letters, vol. 102, p. 201904, 2013.
[20] T. Han, T. Yuan, B. Li, and C.-W. Qiu, 'Homogeneous thermal cloak with constant conductivity and tunable heat localization,' Scientific Reports, vol. 3, p. 1593, 2013.
[21] T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, 'Experimental demonstration of a bilayer thermal cloak,' Physical Review Letters, vol. 112, p. 054302, 2014.
[22] H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, 'Ultrathin three-dimensional thermal cloak,' Physical Review Letters, vol. 112, p. 054301, 2014.
[23] T. Yang, L. Huang, F. Chen, and W. Xu, 'Heat flux and temperature field cloaks for arbitrarily shaped objects,' Journal of Physics D: Applied Physics, vol. 46, p. 305102, 2013.
[24] L. Sun, Z. Yu, and J. Huang, 'Design of plate directional heat transmission structure based on layered thermal metamaterials,' AIP Advances, vol. 6, p. 025101, 2016.
[25] E. M. Dede, P. Schmalenberg, T. Nomura, and M. Ishigaki, 'Design of anisotropic thermal conductivity in multilayer printed circuit boards,' IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 5, pp. 1763-1774, 2015.
[26] F. Chen and D. Y. Lei, 'Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,' Scientific Reports, vol. 5, 2015.
[27] I. Peralta, V. D. Fachinotti, and Á. A. Ciarbonetti, 'Optimization-based design of a heat flux concentrator,' Scientific Reports, vol. 7, p. 40591, 2017.
[28] E. M. Dede, P. Schmalenberg, C.-M. Wang, F. Zhou, and T. Nomura, 'Collection of low-grade waste heat for enhanced energy harvesting,' AIP Advances, vol. 6, p. 055113, 2016.
[29] R. Kiflemariam and C.-X. Lin, 'Numerical simulation of integrated liquid cooling and thermoelectric generation for self-cooling of electronic devices,' International Journal of Thermal Sciences, vol. 94, pp. 193-203, 2015.
[30] R. Kapadia and P. Bandaru, 'Heat flux concentration through polymeric thermal lenses,' Applied Physics Letters, vol. 105, p. 233903, 2014.
[31] T. Han, X. Bai, J. T. Thong, B. Li, and C. W. Qiu, 'Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials,' Advanced Materials, vol. 26, pp. 1731-1734, 2014.
[32] S. Xiang-Ying, C. Yi-Xuan, and H. Ji-Ping, 'Thermal magnifier and minifier,' Communications in Theoretical Physics, vol. 65, p. 375, 2016.
[33] N. Zhu, X. Shen, and J. Huang, 'Converting the patterns of local heat flux via thermal illusion device,' AIP Advances, vol. 5, p. 053401, 2015.
[34] Q. Hou, X. Zhao, T. Meng, and C. Liu, 'Illusion thermal device based on material with constant anisotropic thermal conductivity for location camouflage,' Applied Physics Letters, vol. 109, p. 103506, 2016.
[35] S. Guenneau and C. Amra, 'Anisotropic conductivity rotates heat fluxes in transient regimes,' Optics Express, vol. 21, pp. 6578-6583, 2013.
[36] D. M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, 'Active thermal cloak,' Applied Physics Letters, vol. 107, p. 121901, 2015.
[37] Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, et al., 'Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes,' Physical Review Letters, vol. 115, p. 195503, 2015.
[38] X. Shen, Y. Li, C. Jiang, Y. Ni, and J. Huang, 'Thermal cloak-concentrator,' Applied Physics Letters, vol. 109, p. 031907, 2016.
[39] X. Shen, Y. Li, C. Jiang, and J. Huang, 'Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change,' Physical Review Letters, vol. 117, p. 055501, 2016.
[40] G. Park, S. Kang, H. Lee, and W. Choi, 'Tunable multifunctional thermal metamaterials: manipulation of local heat flux via assembly of unit-cell thermal shifters,' Scientific Reports, vol. 7, 2017.
[41] J. N. Grima, E. Manicaro, and D. Attard, 'Auxetic behaviour from connected different-sized squares and rectangles,' Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 467, pp. 439-458, 2011.
[42] K. Billon, I. Zampetakis, F. Scarpa, M. Ouisse, E. Sadoulet-Reboul, M. Collet, et al., 'Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials,' Composite Structures, vol. 160, pp. 1042-1050, 2017.
[43] L. Ai and X.-L. Gao, 'Metamaterials with negative poisson’s ratio and non-positive thermal expansion,' Composite Structures, vol. 162, pp. 70-84, 2017.
[44] P. Bandaru, K. Vemuri, F. Canbazoglu, and R. Kapadia, 'Layered thermal metamaterials for the directing and harvesting of conductive heat,' AIP Advances, vol. 5, p. 053403, 2015.
[45] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, 'Isotropic transformation optics: approximate acoustic and quantum cloaking,' New Journal of Physics, vol. 10, p. 115024, 2008.
[46] K. P. Vemuri and P. R. Bandaru, 'Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials,' Applied Physics Letters, vol. 103, p. 133111, 2013.
[47] K. Vemuri, F. Canbazoglu, and P. Bandaru, 'Guiding conductive heat flux through thermal metamaterials,' Applied Physics Letters, vol. 105, p. 193904, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67079-
dc.description.abstract本研究之內容為可調式熱超穎材料概念之提出,結合拉脹性旋轉方塊之變形機制使原本僅具單一功能之熱超穎材料可達到功能性上的轉換,進而實現具可調功能的熱超穎材料。探討方式以熱超穎材料中最普遍之課題,熱遮蔽裝置,作為可調控功能之研究,經由外力的施加使其能由熱遮蔽裝置轉換為熱集中裝置。其中以商用有限元素軟體進行分析模擬,探討本研究所提出之可調式熱遮蔽-集中裝置其可調性與功能性,亦透過熱傳實驗觀察試體之溫度分佈,並與模擬進行相互印證。本研究提出之可調式熱遮蔽-集中裝置,可調控其內部區域之溫度梯度變化,此外並提出一得到原熱超穎材料轉換後其功能性之方法,作為後續相關研究之使用。zh_TW
dc.description.abstractBy combining the rotating squares with auxetic property, this study proposed a concept of thermal metamaterials with tunable functionalities. Here we introduce such thermal metamaterial, which can change from a cloak to a concentrator when the metamaterial are subjected to external forces. The proposed dual functional metamaterial can thermally protect a region and transform into a concentrator to focus heat flux in a small region, in both simulation and experimental verification using finite element method and fabricated structures made form copper, epoxy and rotating squares. This work paves the way for a controllable gradient of heat, and also provides guidance for other thermal metamateriasls with tunable functionalities.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:19:19Z (GMT). No. of bitstreams: 1
ntu-106-R04525077-1.pdf: 9941895 bytes, checksum: 9e8c4e2f8fcc13264ef8d9064fda0576 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝.................................................................................................................................... i
中文摘要........................................................................................................................... ii
英文摘要.......................................................................................................................... iii
目錄.................................................................................................................................. iv
圖目錄.............................................................................................................................. vi
表目錄............................................................................................................................ xiii
第一章 簡介 1
1.1動機....................................................................................................................... 1
1.2研究背景............................................................................................................... 1
1.3研究目的 4
1.4重要性與貢獻 5
1.5名詞對照與符號說明 5
第二章 文獻探討 7
2.1熱遮蔽裝置 9
2.2熱集中裝置 11
2.3熱擾亂裝置 14
2.4熱旋轉裝置 16
2.5可調功能熱超穎材料 17
2.6拉脹性超穎材料 20
第三章 方法 21
3.1研究架構流程 21
3.2轉換熱學 22
3.3可調式熱遮蔽-集中裝置設計 32
3.4有限元素數值模擬 38
3.5熱傳實驗 44
第四章 結果 52
4.1熱傳模擬結果 52
4.2熱傳實驗結果 70
第五章 討論 72
5.1理論模型、等效模型與實驗量測結果比較 72
5.2裝置單元結構數比較 77
5.3實驗量測討論 80
第六章 結論與未來展望 83
6.1結論..................................................................................................................... 83
6.2未來展望............................................................................................................. 84
參考文獻......................................................................................................................... 87
dc.language.isozh-TW
dc.subject轉換熱學zh_TW
dc.subject熱超穎材料zh_TW
dc.subject熱遮蔽zh_TW
dc.subject熱集中zh_TW
dc.subject拉脹性zh_TW
dc.subjectThermal cloaken
dc.subjectThermal concentratoren
dc.subjectTransformation thermodynamicsen
dc.subjectThermal metamaterialsen
dc.subjectAuxeticen
dc.title拉脹性方塊於可調功能熱超穎材料之實現zh_TW
dc.titleRealization of Thermal Metamaterials with Tunable Functionalities by Auxetic Squaresen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋家驥(Chia-Chi Sung),李佳翰(Jia-Han Li),陳 洵毅(Hsun-Yi Chen)
dc.subject.keyword轉換熱學,熱超穎材料,熱遮蔽,熱集中,拉脹性,zh_TW
dc.subject.keywordTransformation thermodynamics,Thermal metamaterials,Thermal cloak,Thermal concentrator,Auxetic,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201703054
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
9.71 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved