Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67074
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯嘉洪(Chia-Hung Hou)
dc.contributor.authorChung-Chun Hsuen
dc.contributor.author許中俊zh_TW
dc.date.accessioned2021-06-17T01:19:12Z-
dc.date.available2018-08-20
dc.date.copyright2017-08-20
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citationAndelman, M.D., 2002. Charge barrier flow-through capacitor, CA Patent 2444390.
Anderson, M.A., Cudero, A.L. and Palma, J. (2010) Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 55(12), 3845-3856.
Biesheuvel, P.M. and van der Wal, A. (2010) Membrane capacitive deionization. Journal of Membrane Science 346(2), 256-262.
Biesheuvel, P.M., Zhao, R., Porada, S. and van der Wal, A. (2011) Theory of membrane capacitive deionization including the effect of the electrode pore space. J Colloid Interface Sci 360(1), 239-248.
Chen, Z., Zhang, H., Wu, C., Wang, Y. and Li, W. (2015) A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization. Desalination 369, 46-50.
Cumbal, L. and SenGupta, A.K. (2005) Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: role of Donnan membrane effect. Environmental Science & Technology 39(17), 6508-6515.
Di Fabio, A., Giorgi, A., Mastragostino, M. and Soavi, F. (2001) Carbon-poly (3-methylthiophene) hybrid supercapacitors. Journal of the Electrochemical Society 148(8), A845-A850.
Donnan, F.G. (1924) The theory of membrane equilibria. Chemical Reviews 1(1), 73-90.
Donnan, F.G. (1995) Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. Journal of Membrane Science 100(1), 45-55.
Drenkova-Tuhtan, A., Schneider, M., Franzreb, M., Meyer, C., Gellermann, C., Sextl, G., Mandel, K. and Steinmetz, H. (2017) Pilot-scale removal and recovery of dissolved phosphate from secondary wastewater effluents with reusable ZnFeZr adsorbent @ Fe3O4/SiO2 particles with magnetic harvesting. Water Res 109, 77-87.
Duca, M.D., Plosceanu, C.L. and Pop, T. (1998) Effect of X‐rays on poly (vinylidene fluoride) in X‐ray photoelectron spectroscopy. Journal of applied polymer science 67(13), 2125-2129.
Dykstra, J.E., Zhao, R., Biesheuvel, P.M. and van der Wal, A. (2016) Resistance identification and rational process design in Capacitive Deionization. Water Res 88, 358-370.
Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W. and Poco, J.F. (1995) Capacitive deionization with carbon aerogel electrodes: carbonate, sulfate, and phosphate, pp. 294-304, SAMPE SOCIETY FOR THE ADVANCEMENT OF MATERIAL.
Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W. and Poco, J.F. (1996) Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society 143(1), 159-169.
Han, L., Karthikeyan, K.G., Anderson, M.A., Wouters, J.J. and Gregory, K.B. (2013) Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization. Electrochimica Acta 90, 573-581.
Hou, C.-H. and Huang, C.-Y. (2013) A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination 314, 124-129.
Hsieh, C.-T. and Teng, H. (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40(5), 667-674.
Huyskens, C., Helsen, J. and de Haan, A.B. (2013) Capacitive deionization for water treatment: Screening of key performance parameters and comparison of performance for different ions. Desalination 328, 8-16.
Kilpimaa, S., Runtti, H., Kangas, T., Lassi, U. and Kuokkanen, T. (2015) Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution. Journal of Industrial and Engineering Chemistry 21, 1354-1364.
Kim, J.-S. and Choi, J.-H. (2010a) Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications. Journal of Membrane Science 355(1-2), 85-90.
Kim, Y.-J., Kim, J.-H. and Choi, J.-H. (2013) Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI). Journal of Membrane Science 429, 52-57.
Kim, Y.J. and Choi, J.H. (2010b) Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer. Water Res 44(3), 990-996.
Kim, Y.J. and Choi, J.H. (2012) Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. Water Res 46(18), 6033-6039.
Kiriukhin, M.Y. and Collins, K.D. (2002) Dynamic hydration numbers for biologically important ions. Biophysical chemistry 99(2), 155-168.
Lado, J.J., Pérez-Roa, R.E., Wouters, J.J., Isabel Tejedor-Tejedor, M. and Anderson, M.A. (2014) Evaluation of operational parameters for a capacitive deionization reactor employing asymmetric electrodes. Separation and Purification Technology 133, 236-245.
Lado, J.J., Pérez-Roa, R.E., Wouters, J.J., Tejedor-Tejedor, M.I., Federspill, C., Ortiz, J.M. and Anderson, M.A. (2017) Removal of nitrate by asymmetric capacitive deionization. Separation and Purification Technology 183, 145-152.
Lee, J.-B., Park, K.-K., Eum, H.-M. and Lee, C.-W. (2006) Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination 196(1-3), 125-134.
Li, H. and Zou, L. (2011) Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination 275(1-3), 62-66.
Liu, Y., Nie, C., Liu, X., Xu, X., Sun, Z. and Pan, L. (2015) Review on carbon-based composite materials for capacitive deionization. RSC Adv. 5(20), 15205-15225.
Miller, J. and Dunn, B. (1999) Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures. Langmuir 15(3), 799-806.
Momma, T., Liu, X., Osaka, T., Ushio, Y. and Sawada, Y. (1996) Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor. Journal of Power Sources 60(2), 249-253.
Morse, G., Brett, S., Guy, J. and Lester, J. (1998) Review: phosphorus removal and recovery technologies. Science of the total environment 212(1), 69-81.
Mossad, M., Zhang, W. and Zou, L. (2013) Using capacitive deionisation for inland brackish groundwater desalination in a remote location. Desalination 308, 154-160.
Mossad, M. and Zou, L. (2012) A study of the capacitive deionisation performance under various operational conditions. Journal of Hazardous Materials 213-214, 491-497.
Nightingale Jr, E. (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry 63(9), 1381-1387.
Oren, Y. (2008) Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 228(1-3), 10-29.
Pan, L., Wang, X., Gao, Y., Zhang, Y., Chen, Y. and Sun, Z. (2009) Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes. Desalination 244(1-3), 139-143.
Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J.S., Keesman, K.J., Kaskel, S., Biesheuvel, P.M. and Presser, V. (2013a) Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy & Environmental Science 6(12), 3700.
Porada, S., Zhao, R., van der Wal, A., Presser, V. and Biesheuvel, P.M. (2013b) Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 58(8), 1388-1442.
Pröbstle, H., Schmitt, C. and Fricke, J. (2002) Button cell supercapacitors with monolithic carbon aerogels. Journal of Power Sources 105(2), 189-194.
Sata, T. (2004) Ion exchange membranes: preparation, characterization, modification and application, Royal Society of chemistry.
Sengupta, S. and Pandit, A. (2011) Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Res 45(11), 3318-3330.
Smith, V.H., Tilman, G.D. and Nekola, J.C. (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental pollution 100(1), 179-196.
Suss, M.E., Porada, S., Sun, X., Biesheuvel, P.M., Yoon, J. and Presser, V. (2015) Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8(8), 2296-2319.
Tanaka, Y. (2015) Ion Exchange Membranes (Second Edition), pp. 3-28, Elsevier, Amsterdam.
Tang, W., He, D., Zhang, C. and Waite, T.D. (2017) Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Res 121, 302-310.
Tang, W., Kovalsky, P., He, D. and Waite, T.D. (2015) Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Res 84, 342-349.
Tansel, B., Sager, J., Rector, T., Garland, J., Strayer, R.F., Levine, L., Roberts, M., Hummerick, M. and Bauer, J. (2006) Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Separation and Purification Technology 51(1), 40-47.
Xu, P., Drewes, J.E., Heil, D. and Wang, G. (2008) Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res 42(10-11), 2605-2617.
Yeo, J.-H. and Choi, J.-H. (2013) Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode. Desalination 320, 10-16.
Zhao, R., Satpradit, O., Rijnaarts, H.H., Biesheuvel, P.M. and van der Wal, A. (2013a) Optimization of salt adsorption rate in membrane capacitive deionization. Water Res 47(5), 1941-1952.
Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S. and Wang, J. (2013b) Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Desalination 324, 127-133.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67074-
dc.description.abstract電容去離子(Capacitive deionization, CDI)為一新穎的電化學技術,能夠藉由電場的作用分離水中帶電荷之物質與離子,達到去除鹽類或是污染物質的目的。近年來,離子交換材料(Ion exchange materials)廣泛應用於電容去離子技術,成為薄膜電容去離子(Membrane capacitive deionization, MCDI)系統來提升電容去離子技術的脫鹽效率,已有許多研究致力於開發具有高效能、低成本及環境友善性的離子交換複合式電極。在本研究中,運用簡易且快速的方法製成非均質陰離子交換碳電極(heterogeneous anion-exchange carbon electrode, AE-AC),使得電極具有陰離子交換膜的特性以及活性碳的多孔性,來提升脫鹽過程當中的磷酸離子選擇性與吸附量。電極特性分析分為表面分析及電化學特性分析兩部分,其中表面特性藉由如掃描式電子顯微鏡(SEM)、X射線光電子能譜(XPS)等方式來分析其物理及化學性質;電化學分析實驗如循環伏安法(CV),分析測試電極之電容特性與充放電表現,而結果顯示,活性碳電極經塗佈陰離子交換層後,一樣具有出色的電容表現。在批次式薄膜電容去離子系統之脫鹽實驗部分,將陰離子交換碳電極(AE-AC)作為陽極,能有效提升磷酸的電吸附量達0.0716 mmol/g-carbon。研究之實驗參數包含:離子電吸附電壓、離子脫附之反向電壓、溶液pH值影響以及磷酸根離子與氯離子之競爭性。經由不同電壓測試脫鹽效果,可得知薄膜電容去離子系統之最佳吸附及脫附電壓;而pH與競爭性實驗則是使用不同進流水樣,探討磷酸根物種個別的吸附量以及磷酸根離子受氯離子的影響程度。最後,在連續式薄膜電容去離子實驗中,運用非均質陰離子交換碳電極之磷酸電吸附量可達0.1235 mmol/g-carbon,約為活性碳電極的3.5倍。此結果顯示,非均質陰離子交換層塗佈於碳電極後,相當具有應用於薄膜電容去離子技術去除/分離水中磷酸鹽之潛力。zh_TW
dc.description.abstractCapacitive deionization (CDI) has been developed as a promising electrochemical technology for removing ionic species. Recently, ion-exchange based materials have been widely introduced into the CDI, constituting a membrane capacitive deionization (MCDI) system to further enhance the ion removal efficiency. Many researchers have developed the high exchange capacity, low cost and environmental friendly ion-exchange electrodes. In this study, the heterogeneous anion-exchange composite electrodes were prepared to increase the phosphate removal from water. The heterogeneous anion-exchange carbon electrode (AE-AC) was integrated with anion-exchange resin (AE) and activated carbon (AC) via a facile approach. The surface analyses were implemented to characterize the physical and chemical behaviors of the electrodes, such as scanning electron microscope and X-ray photoelectron spectroscopy. Besides, as resulted by electrochemical measurements (e.g., cyclic voltammetry), the carbon electrode coated with anion-exchange layer has good capacitive properties for ion storage. The batch-mode desalination performance of MCDI using the AE-AC electrode as anode material showed superior phosphate electrosorption capacity of 0.0716 mmol/g-carbon. The optimal charging and discharging potentials were determined by the electrosorption-desorption cycling experiments. The effects of pH and competition with other ions on phosphate removal were also tested. Importantly, the phosphate electrosorption capacity of AE-AC electrode in the single-pass CDI experiment is 0.1235 mmol/g-carbon, which is about 3.5 times more than that of the activated carbon electrode. One can conclude that the heterogeneous anion-exchange layer coated carbon electrode has the great potential for enhanced phosphate removal in MCDI process.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:19:12Z (GMT). No. of bitstreams: 1
ntu-106-R04541106-1.pdf: 3579037 bytes, checksum: 111f967ff9ff92eab462cb991ca2af7f (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
Abstract II
Contents IV
List of Figures VI
List of Tables XI
Chapter 1 Introduction 1
1.1. Background 1
1.2. Objectives 3
Chapter 2 Literature Review 4
2.1. Capacitive deionization technology (CDI) 4
2.1.1. Principle of capacitive deionization 4
2.1.2. Characteristics of the carbon electrode materials 6
2.1.3. Ion selectivity for CDI technology 7
2.1.4. The limitations of CDI system 8
2.2. Membrane capacitive deionization technology (MCDI) 10
2.2.1. Features of membrane capacitive deionization 10
2.2.2. Membrane types for capacitive deionization 12
2.2.3. Specific anion removal for MCDI technology 14
Chapter 3 Experimental Materials and Methods 16
3.1. Experimental equipment and materials. 16
3.2. Experimental design and electrode fabrication 19
3.2.1. Preparation of the activated carbon electrode (AC electrode) 20
3.2.2. Preparation of the anion-exchange carbon electrode (AE-AC electrode) 21
3.3. Surface characterization of electrodes 22
3.3.1. Brunauer-Emmett-Teller (BET) analysis 22
3.3.2. Scanning electron microscope (SEM) 22
3.3.3. Contact angle measurement 23
3.3.4. X-ray photoelectron spectroscopy (XPS) 24
3.3.5. Thermogravimetric analysis (TGA) 24
3.4. Electrochemical measurements 25
3.4.1. Cyclic voltammetry (CV) 26
3.4.2. Galvanostatic charge/discharge (GC) 28
3.4.3. Electrochemical impedance spectroscopy (EIS) 30
3.5. Chemical analysis 32
3.6. Capacitive deionization experiments 32
3.6.1. Performance indexes of capacitive deionization technology 35
3.6.2. Effects of the potential, pH and competing ions 36
Chapter 4 Result and Discussion 38
4.1. Electrode characterization 38
4.1.1. Specific surface area and pore size distribution 38
4.1.2. Surface morphology 41
4.1.3. Contact angle measurement 44
4.1.4. Surface chemical composition 45
4.1.5. Thermogravimetric analysis (TGA) 47
4.2. Electrochemical properties 49
4.2.1. Cyclic voltammetry experiments 49
4.2.2. Galvanostatic charge/discharge experiments 53
4.2.3. Electrochemical impedance spectroscopy experiments 56
4.3. Batch-mode experiments of CDI and MCDI 59
4.3.1. Desalination performance at different applied potentials 59
4.3.2. Electrosorption performance at pH 5 and pH 8 64
4.3.3. Desorption efficiency at different reverse potentials. 66
4.3.4. Electrosorption selectivity of phosphate over chloride ions 69
4.4. Single-pass experiments of CDI and MCDI 73
Chapter 5 Conclusions and Recommendations 81
5.1. Conclusions 81
5.2. Recommendations 82
Reference 83
dc.language.isoen
dc.subject電容去離子技術zh_TW
dc.subject非均質離子交換層zh_TW
dc.subject活性碳電極zh_TW
dc.subject磷酸鹽去除zh_TW
dc.subject電吸附zh_TW
dc.subjectelectrosorptionen
dc.subjectcapacitive deionizationen
dc.subjectheterogeneous ion-exchange layeren
dc.subjectactivated carbon electrodeen
dc.subjectphosphate removalen
dc.title以非均質陰離子交換層塗佈之碳電極提升薄膜電容去離子技術之磷酸去除率zh_TW
dc.titleEnhanced Removal of Phosphate Using Heterogeneous Anion Exchange Layer Coated Carbon Electrodes for Membrane Capacitive Deionizationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李公哲,王大銘,林逸彬,劉守恒
dc.subject.keyword電容去離子技術,非均質離子交換層,活性碳電極,磷酸鹽去除,電吸附,zh_TW
dc.subject.keywordcapacitive deionization,heterogeneous ion-exchange layer,activated carbon electrode,phosphate removal,electrosorption,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201702573
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved