Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67049
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康敦彥
dc.contributor.authorYen-Ru Chenen
dc.contributor.author陳彥儒zh_TW
dc.date.accessioned2021-06-17T01:18:25Z-
dc.date.available2018-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citation1. Li, J. R.; Kuppler, R. J.; Zhou, H. C., Selective gas adsorption and separation in
metal-organic frameworks. Chem Soc Rev 2009, 38 (5), 1477-1504.
2. Hamon, L.; Heymans, N.; Llewellyn, P. L.; Guillerm, V.; Ghoufi, A.; Vaesen, S.;
Maurin, G.; Serre, C.; De Weireld, G.; Pirngruber, G. D., Separation of CO2-CH4
mixtures in the mesoporous MIL-100(Cr) MOF: experimental and modelling approaches.
Dalton Trans 2012, 41 (14), 4052-9.
3. Parkes, M. V.; Sava Gallis, D. F.; Greathouse, J. A.; Nenoff, T. M., Effect of Metal
in M-3(btc)(2) and M-2(dobdc) MOFs for O-2/N-2 Separations: A Combined Density
Functional Theory and Experimental Study. J Phys Chem C 2015, 119 (12), 6556-6567.
4. Motevalli, B.; Wang, H.; Liu, J. Z., Cooperative Reformable Channel System with
Unique Recognition of Gas Molecules in a Zeolitic Imidazolate Framework with
Multilevel Flexible Ligands. The Journal of Physical Chemistry C 2015, 119 (29), 16762-
16768.
5. Li, W. B.; Zhang, Y. F.; Zhang, C. Y.; Meng, Q.; Xu, Z. H.; Su, P. C.; Li, Q. B.; Shen,
C.; Fan, Z.; Qin, L.; Zhang, G. L., Transformation of metal-organic frameworks for
molecular sieving membranes. Nat Commun 2016, 7.
6. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metalorganic
framework materials as catalysts. Chem Soc Rev 2009, 38 (5), 1450-1459.
7. Laurier, K. G. M.; Vermoortele, F.; Ameloot, R.; De Vos, D. E.; Hofkens, J.;
Roeffaers, M. B. J., Iron(III)-Based Metal-Organic Frameworks As Visible Light
Photocatalysts. J Am Chem Soc 2013, 135 (39), 14488-14491.
8. Santos, V. P.; Wezendonk, T. A.; Jaen, J. J. D.; Dugulan, A. I.; Nasalevich, M. A.;
Islam, H. U.; Chojecki, A.; Sartipi, S.; Sun, X.; Hakeem, A. A.; Koeken, A. C. J.;
Ruitenbeek, M.; Davidian, T.; Meima, G. R.; Sankar, G.; Kapteijn, F.; Makkee, M.;
Gascon, J., Metal organic framework-mediated synthesis of highly active and stable
Fischer-Tropsch catalysts. Nat Commun 2015, 6.
9. Zhang, F.; Shi, J.; Jin, Y.; Fu, Y.; Zhong, Y.; Zhu, W., Facile synthesis of MIL-100(Fe)
under HF-free conditions and its application in the acetalization of aldehydes with diols.
Chemical Engineering Journal 2015, 259, 183-190.
10. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.;
Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P.
N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R., Porous metal-organicframework
nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 2010, 9 (2), 172-8.
11. Huxford, R. C.; Della Rocca, J.; Lin, W. B., Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol 2010, 14 (2), 262-268.
12. Cunha, D.; Ben Yahia, M.; Hall, S.; Miller, S. R.; Chevreau, H.; Elkaim, E.; Maurin,
G.; Horcajada, P.; Serre, C., Rationale of Drug Encapsulation and Release from
Biocompatible Porous Metal-Organic Frameworks. Chem Mater 2013, 25 (14), 2767-
2776.
13. Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R.
Q., Screening of bio-compatible metal-organic frameworks as potential drug carriers
using Monte Carlo simulations. J Mater Chem B 2014, 2 (7), 766-774.
14. Bellido, E.; Guillevic, M.; Hidalgo, T.; Santander-Ortega, M. J.; Serre, C.; Horcajada,
P., Understanding the colloidal stability of the mesoporous MIL-100(Fe) nanoparticles in
physiological media. Langmuir 2014, 30 (20), 5911-20.
15. Li, Y.; Yang, R. T., Gas adsorption and storage in metal-organic framework MOF-
177. Langmuir 2007, 23 (26), 12937-12944.
16. Li, L. J.; Tang, S. F.; Wang, C.; Lv, X. X.; Jiang, M.; Wu, H. Z.; Zhao, X. B., High
gas storage capacities and stepwise adsorption in a UiO type metal-organic framework
incorporating Lewis basic bipyridyl sites. Chem Commun 2014, 50 (18), 2304-2307.
17. Jeremias, F.; Khutia, A.; Henninger, S. K.; Janiak, C., MIL-100(Al, Fe) as water
adsorbents for heat transformation purposes-a promising application. J Mater Chem 2012,
22 (20), 10148-10151.
18. Seo, Y. K.; Yoon, J. W.; Lee, J. S.; Hwang, Y. K.; Jun, C. H.; Chang, J. S.; Wuttke,
S.; Bazin, P.; Vimont, A.; Daturi, M.; Bourrelly, S.; Llewellyn, P. L.; Horcajada, P.; Serre,
C.; Ferey, G., Energy-Efficient Dehumidification over Hierachically Porous MetalOrganic
Frameworks as Advanced Water Adsorbents. Adv Mater 2012, 24 (6), 806-+.
19. Kim, S.-I.; Yoon, T.-U.; Kim, M.-B.; Lee, S.-J.; Hwang, Y. K.; Chang, J.-S.; Kim,
H.-J.; Lee, H.-N.; Lee, U. H.; Bae, Y.-S., Metal–organic frameworks with high working
capacities and cyclic hydrothermal stabilities for fresh water production. Chemical
Engineering Journal 2016, 286, 467-475.
20. Wang, J. Y.; Wang, R. Z.; Wang, L. W., Water vapor sorption performance of ACFCaCl2
and silica gel-CaCl2 composite adsorbents. Applied Thermal Engineering 2016,
100, 893-901.
21. Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.;
Yaghi, O. M., Water Adsorption in Porous Metal-Organic Frameworks and Related
Materials. J Am Chem Soc 2014, 136 (11), 4369-4381.
22. Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D., Water adsorption in
MOFs: fundamentals and applications. Chem Soc Rev 2014, 43 (16), 5594-617.
23. Horcajada, P.; Surble, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche,
J. M.; Margiolaki, I.; Ferey, G., Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun 2007, (27), 2820-2822.
24. Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J. J.; Walton, K. S.,
Effect of Water Adsorption on Retention of Structure and Surface Area of Metal-Organic
Frameworks. Ind Eng Chem Res 2012, 51 (18), 6513-6519.
25. Zhang, K.; Lively, R. P.; Dose, M. E.; Brown, A. J.; Zhang, C.; Chung, J.; Nair, S.;
Koros, W. J.; Chance, R. R., Alcohol and water adsorption in zeolitic imidazolate
frameworks. Chem Commun 2013, 49 (31), 3245-3247.
26. Seo, Y. K.; Yoon, J. W.; Lee, J. S.; Lee, U. H.; Hwang, Y. K.; Jun, C. H.; Horcajada,
P.; Serre, C.; Chang, J. S., Large scale fluorine-free synthesis of hierarchically porous
iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Micropor Mesopor Mat
2012, 157, 137-145.
27. Vimont, A.; Goupil, J.-M.; Lavalley, J.-C.; Daturi, M.; Surblé, S.; Serre, C.; Millange,
F.; Férey, G.; Audebrand, N., Investigation of Acid Sites in a Zeotypic Giant Pores
Chromium(III) Carboxylate. J Am Chem Soc 2006, 128 (10), 3218-3227.
28. Yoon, J. W.; Seo, Y. K.; Hwang, Y. K.; Chang, J. S.; Leclerc, H.; Wuttke, S.; Bazin,
P.; Vimont, A.; Daturi, M.; Bloch, E.; Llewellyn, P. L.; Serre, C.; Horcajada, P.; Greneche,
J. M.; Rodrigues, A. E.; Ferey, G., Controlled reducibility of a metal-organic framework
with coordinatively unsaturated sites for preferential gas sorption. Angew Chem Int Ed
Engl 2010, 49 (34), 5949-52.
29. Marquez, A. G.; Demessence, A.; Platero-Prats, A. E.; Heurtaux, D.; Horcajada, P.;
Serre, C.; Chang, J. S.; Ferey, G.; de la Pena-O'Shea, V. A.; Boissiere, C.; Grosso, D.;
Sanchez, C., Green Microwave Synthesis of MIL-100(Al, Cr, Fe) Nanoparticles for ThinFilm
Elaboration. Eur J Inorg Chem 2012, (32), 5165-5174.
30. Duan, S. X.; Li, J. X.; Liu, X.; Wang, Y. N.; Zeng, S. Y.; Shao, D. D.; Hayat, T., HFFree
Synthesis of Nanoscale Metal-Organic Framework NMIL-100(Fe) as an Efficient
Dye Adsorbent. Acs Sustain Chem Eng 2016, 4 (6), 3368-3378.
31. Jeremias, F.; Henninger, S. K.; Janiak, C., Ambient pressure synthesis of MIL-
100(Fe) MOF from homogeneous solution using a redox pathway. Dalton T 2016, 45 (20),
8637-8644.
32. Berdonosova, E. A.; Kovalenko, K. A.; Polyakova, E. V.; Klyamkin, S. N.; Fedin, V.
P., Influence of Anion Composition on Gas Sorption Features of Cr-MIL-101 MetalOrganic
Framework. J Phys Chem C 2015, 119 (23), 13098-13104.
33. Kusgens, P.; Rose, M.; Senkovska, I.; Frode, H.; Henschel, A.; Siegle, S.; Kaskel, S.,
Characterization of metal-organic frameworks by water adsorption. Micropor Mesopor
Mat 2009, 120 (3), 325-330.
34. Bezverkhyy, I.; Weber, G.; Bellat, J. P., Degradation of fluoride-free MIL-100(Fe)
and MIL-53(Fe) in water: Effect of temperature and pH. Micropor Mesopor Mat 2016,
219, 117-124.
35. Kolokathis, P. D.; Pantatosaki, E.; Papadopoulos, G. K., Atomistic Modeling of Water Thermodynamics and Kinetics within MIL-100(Fe). The Journal of Physical
Chemistry C 2015, 119 (34), 20074-20084.
36. De Lange, M. F.; Gutierrez-Sevillano, J.-J.; Hamad, S.; Vlugt, T. J. H.; Calero, S.;
Gascon, J.; Kapteijn, F., Understanding Adsorption of Highly Polar Vapors on
Mesoporous MIL-100(Cr) and MIL-101(Cr): Experiments and Molecular Simulations.
The Journal of Physical Chemistry C 2013, 117 (15), 7613-7622.
37. Qadir, N. U.; Said, S. A. M.; Mansour, R. B.; Mezghani, K.; Ul-Hamid, A., Synthesis,
characterization, and water adsorption properties of a novel multi-walled carbon
nanotube/MIL-100(Fe) composite. Dalton Transactions 2016, 45 (39), 15621-15633.
38. Chen, W.; Zhang, Z.; Bao, W.; Lai, Y.; Li, J.; Gan, Y.; Wang, J., Hierarchical
mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as
a cathode electrocatalyst for rechargeable Li-O2 batteries. Electrochimica Acta 2014, 134,
293-301.
39. Mayo, S. L.; Olafson, B. D.; Goddard, W. A., Dreiding - a Generic Force-Field for
Molecular Simulations. J Phys Chem-Us 1990, 94 (26), 8897-8909.
40. Wilmer, C. E.; Kim, K. C.; Snurr, R. Q., An Extended Charge Equilibration Method.
The Journal of Physical Chemistry Letters 2012, 3 (17), 2506-2511.
41. Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q., RASPA: molecular simulation
software for adsorption and diffusion in flexible nanoporous materials. Mol Simulat 2016,
42 (2), 81-101.
42. Dubbeldam, D.; Torres-Knoop, A.; Walton, K. S., On the inner workings of Monte
Carlo codes. Molecular Simulation 2013, 39 (14-15), 1253-1292.
43. Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.;
Head-Gordon, T., Development of an improved four-site water model for biomolecular
simulations: TIP4P-Ew. The Journal of Chemical Physics 2004, 120 (20), 9665-9678.
44. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.;
Payne, M. C., First principles methods using CASTEP. Z Kristallogr 2005, 220 (5-6),
567-570.
45. Liou, K.-H.; Tsou, N.-T.; Kang, D.-Y., Relationships among the structural topology,
bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.
Nanoscale 2015, 7 (39), 16222-16229.
46. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made
simple. Phys Rev Lett 1996, 77 (18), 3865-3868.
47. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Phys
Rev B 1976, 13 (12), 5188-5192.
48. Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S.,
Characterization of metal-organic frameworks by water adsorption. Micropor Mesopor
Mat 2009, 120 (3), 325-330.
49. Kolokathis, P. D.; Pantatosaki, E.; Papadopouos, G. K., Atomistic Modeling of Water
Thermodynamics and Kinetics within MIL-100(Fe). J Phys Chem C 2015, 119 (34),
20074-20084.
50. Kim, S. I.; Yoon, T. U.; Kim, M. B.; Lee, S. J.; Hwang, Y. K.; Chang, J. S.; Kim, H.
J.; Lee, H. N.; Lee, U. H.; Bae, Y. S., Metal-organic frameworks with high working
capacities and cyclic hydrothermal stabilities for fresh water production. Chem Eng J
2016, 286, 467-475.
51. De Lange, M. F.; Gutierrez-Sevillano, J. J.; Hamad, S.; Vlugt, T. J. H.; Calero, S.;
Gascon, J.; Kapteijn, F., Understanding Adsorption of Highly Polar Vapors on
Mesoporous MIL-100(Cr) and MIL-101 (Cr): Experiments and Molecular Simulations. J
Phys Chem C 2013, 117 (15), 7613-7622.
52. Akiyama, G.; Matsuda, R.; Kitagawa, S., Highly Porous and Stable Coordination
Polymers as Water Sorption Materials. Chem Lett 2010, 39 (4), 360-361.
53. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W.,
Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic
Framework UiO-66 and Their Important Effects on Gas Adsorption. J Am Chem Soc 2013,
135 (28), 10525-10532.
54. Cliffe, M. J.; Wan, W.; Zou, X. D.; Chater, P. A.; Kleppe, A. K.; Tucker, M. G.;
Wilhelm, H.; Funnell, N. P.; Coudert, F. X.; Goodwin, A. L., Correlated defect
nanoregions in a metal-organic framework. Nat Commun 2014, 5.
55. Ghosh, P.; Colon, Y. J.; Snurr, R. Q., Water adsorption in UiO-66: the importance of
defects. Chem Commun 2014, 50 (77), 11329-11331.
56. Fang, Z. L.; Bueken, B.; De Vos, D. E.; Fischer, R. A., Defect-Engineered MetalOrganic
Frameworks. Angew Chem Int Edit 2015, 54 (25), 7234-7254.
57. Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gandara, F.; Burgi, H. B.; Yaghi, O. M.,
Definitive Molecular Level Characterization of Defects in UiO-66 Crystals. Angew Chem
Int Edit 2015, 54 (38), 11162-11167.
58. Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P., Defect
Engineering: Tuning the Porosity and Composition of the Metal-Organic Framework
UiO-66 via Modulated Synthesis. Chem Mater 2016, 28 (11), 3749-3761.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67049-
dc.description.abstract本研究第一部分檢視分子模擬用在 MIL-100(Fe)水吸附上的合理性,說明結構
架設與力場參數的使用,利用分子模擬出的等溫吸附曲線與實驗比較,再利用不同
吸附下的水分布情形解釋等溫吸附曲線中水吸附的機制。
由於具有毒性的氟化氫是 MIL-100(Fe)的原料之一,在本研究的第二部分中,
我們嘗試利用較無毒性的氯離子與氫氧根離子進行氟離子的置換。研究的範圍包
括基態能量比較、等溫吸附曲線、水分子與載體的交互作用力。另一部分審視水吸
附時的微結構影響,討論陰離子、金屬與框架中窗型結構對於水吸附位置的變化。
第三部分討論缺陷結構 MIL-100(Fe)是否在水吸附時會有不同的吸附能力表
現,我們嘗試兩種不同的缺陷結構 : 金屬節點移除(metal-node-missing)、金屬簇移
除(cluster-missing)。兩種缺陷雖然對於整體結構的影響不大,但是金屬簇移除這種
缺陷卻會明顯影響低吸附量時水與 MIL-100(Fe)_Cl 間的交互作用力,交互作用力
的提升可能來自於結構親水性的增加,使水分子能在低濕度的時候較容易吸附在
吸附材上,可使水分子在低濕度時於孔洞內凝結。
zh_TW
dc.description.abstractMIL-100(Fe) is a metal-organic framework which has significant water adsorption
capacity. However, the structural stability for water vapor adsorption was found to be
reduced if hydrofluoric acid (HF), served as mineralizing agent, is not used in the
synthesis, although preferred because of eco-friendly consideration. We investigated the
structural stability for water vapor adsorption of MIL-100(Fe) via density functional
theory and molecular simulation techniques. Dreiding force field for MIL-100(Fe) and
TIP4P for water were used in this study, and water adsorption isotherm showed improved
consistency of results with experiment. We then differenced three kinds of terminal anions
(fluoride, hydroxide, and void, i.e., no ion) on the structural stability for water vapor
adsorption of MIL-100(Fe). We found that the replacement of hydroxide group would
raise the energy of cluster by over 210 eV. Ideal MIL-100(Fe) with alternative anion (Cl
and OH) show poor water adsorption capacity while the interacting energy of defective
structure show significant increase at low loading region, which might enhance the water
adsorption capacity. Further investigation into this interesting defective structure may
lead to future use of catalyst, separation, or even the gate dielectrics in ICs.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:18:25Z (GMT). No. of bitstreams: 1
ntu-106-R04524085-1.pdf: 4504381 bytes, checksum: fe88bf0c06a93f8eea1cd35697c55aa0 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 ................................................................................................................................................ i
摘要 ............................................................................................................................................... ii
Abstract ........................................................................................................................................ iii
Contents......................................................................................................................................... v
List of Figures ............................................................................................................................. vii
List of Tables ................................................................................................................................ ix
Chapter 1 Introduction ............................................................................................................. 1
Chapter 2 Method ..................................................................................................................... 6
2.1 Construction of Crystal Models of MIL-100(Fe)_F .................................................... 6
2.2 Simulations of Adsorption Isotherms ........................................................................ 10
2.3 Calculation of Ground State Energy .......................................................................... 12
2.4 Calculation of Interacting Energy .............................................................................. 14
2.5 Binding Geometry...................................................................................................... 15
Chapter 3 Results and Discussion .......................................................................................... 16
3.1 Water Vapor Adsorption in MIL-100(Fe)_F ............................................................. 16
3.1.1 Water Vapor Adsorption Isotherm ........................................................................ 16
3.1.2 Adsorption Mechanism of Water Molecules in MIL-100(Fe) .............................. 17
3.2 Water Adsorption in MIL-100(Fe) with Alternative Terminals ................................ 21
3.2.1 Stability of MIL-100(Fe) with different terminals ................................................ 21
3.2.2 Water Vapor Adsorption Isotherm ........................................................................ 22
3.2.3 Interacting Energy ................................................................................................. 25
3.2.4 Binding Geometry ................................................................................................. 32
3.3 Prediction of Adsorption Behavior in Defective MIL-100(Fe) ................................. 37
3.3.1 Construction of Defective Structure ...................................................................... 37
3.3.2 Interacting Energy of MNM MIL-100(Fe) ............................................................ 39
3.3.3 Interacting Energy of CM MIL-100(Fe) ............................................................... 42
Chapter 4 Conclusions ........................................................................................................... 46
References ................................................................................................................................... 48
dc.language.isoen
dc.subject結構缺陷zh_TW
dc.subject吸附zh_TW
dc.subject蒙地卡羅方法zh_TW
dc.subject分子模擬zh_TW
dc.subjectMIL-100(Fe)zh_TW
dc.subject計算化學zh_TW
dc.subjectComputational chemistryen
dc.subjectMolecular simulationen
dc.subjectMonte Carloen
dc.subjectAdsorptionen
dc.subjectDefective modelen
dc.subjectMIL-100(Fe)en
dc.title金屬有機骨架之微結構與吸附特性之關聯zh_TW
dc.titleRelationships between microstructure of metal-organic
frameworks and their adsorption properties
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李雨,游琇?,張博凱
dc.subject.keywordMIL-100(Fe),分子模擬,蒙地卡羅方法,吸附,結構缺陷,計算化學,zh_TW
dc.subject.keywordMIL-100(Fe),Molecular simulation,Monte Carlo,Adsorption,Defective model,Computational chemistry,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201703045
dc.rights.note有償授權
dc.date.accepted2017-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved