請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67049完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 康敦彥 | |
| dc.contributor.author | Yen-Ru Chen | en |
| dc.contributor.author | 陳彥儒 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:18:25Z | - |
| dc.date.available | 2018-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-11 | |
| dc.identifier.citation | 1. Li, J. R.; Kuppler, R. J.; Zhou, H. C., Selective gas adsorption and separation in
metal-organic frameworks. Chem Soc Rev 2009, 38 (5), 1477-1504. 2. Hamon, L.; Heymans, N.; Llewellyn, P. L.; Guillerm, V.; Ghoufi, A.; Vaesen, S.; Maurin, G.; Serre, C.; De Weireld, G.; Pirngruber, G. D., Separation of CO2-CH4 mixtures in the mesoporous MIL-100(Cr) MOF: experimental and modelling approaches. Dalton Trans 2012, 41 (14), 4052-9. 3. Parkes, M. V.; Sava Gallis, D. F.; Greathouse, J. A.; Nenoff, T. M., Effect of Metal in M-3(btc)(2) and M-2(dobdc) MOFs for O-2/N-2 Separations: A Combined Density Functional Theory and Experimental Study. J Phys Chem C 2015, 119 (12), 6556-6567. 4. Motevalli, B.; Wang, H.; Liu, J. Z., Cooperative Reformable Channel System with Unique Recognition of Gas Molecules in a Zeolitic Imidazolate Framework with Multilevel Flexible Ligands. The Journal of Physical Chemistry C 2015, 119 (29), 16762- 16768. 5. Li, W. B.; Zhang, Y. F.; Zhang, C. Y.; Meng, Q.; Xu, Z. H.; Su, P. C.; Li, Q. B.; Shen, C.; Fan, Z.; Qin, L.; Zhang, G. L., Transformation of metal-organic frameworks for molecular sieving membranes. Nat Commun 2016, 7. 6. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metalorganic framework materials as catalysts. Chem Soc Rev 2009, 38 (5), 1450-1459. 7. Laurier, K. G. M.; Vermoortele, F.; Ameloot, R.; De Vos, D. E.; Hofkens, J.; Roeffaers, M. B. J., Iron(III)-Based Metal-Organic Frameworks As Visible Light Photocatalysts. J Am Chem Soc 2013, 135 (39), 14488-14491. 8. Santos, V. P.; Wezendonk, T. A.; Jaen, J. J. D.; Dugulan, A. I.; Nasalevich, M. A.; Islam, H. U.; Chojecki, A.; Sartipi, S.; Sun, X.; Hakeem, A. A.; Koeken, A. C. J.; Ruitenbeek, M.; Davidian, T.; Meima, G. R.; Sankar, G.; Kapteijn, F.; Makkee, M.; Gascon, J., Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nat Commun 2015, 6. 9. Zhang, F.; Shi, J.; Jin, Y.; Fu, Y.; Zhong, Y.; Zhu, W., Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chemical Engineering Journal 2015, 259, 183-190. 10. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R., Porous metal-organicframework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 2010, 9 (2), 172-8. 11. Huxford, R. C.; Della Rocca, J.; Lin, W. B., Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol 2010, 14 (2), 262-268. 12. Cunha, D.; Ben Yahia, M.; Hall, S.; Miller, S. R.; Chevreau, H.; Elkaim, E.; Maurin, G.; Horcajada, P.; Serre, C., Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal-Organic Frameworks. Chem Mater 2013, 25 (14), 2767- 2776. 13. Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q., Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations. J Mater Chem B 2014, 2 (7), 766-774. 14. Bellido, E.; Guillevic, M.; Hidalgo, T.; Santander-Ortega, M. J.; Serre, C.; Horcajada, P., Understanding the colloidal stability of the mesoporous MIL-100(Fe) nanoparticles in physiological media. Langmuir 2014, 30 (20), 5911-20. 15. Li, Y.; Yang, R. T., Gas adsorption and storage in metal-organic framework MOF- 177. Langmuir 2007, 23 (26), 12937-12944. 16. Li, L. J.; Tang, S. F.; Wang, C.; Lv, X. X.; Jiang, M.; Wu, H. Z.; Zhao, X. B., High gas storage capacities and stepwise adsorption in a UiO type metal-organic framework incorporating Lewis basic bipyridyl sites. Chem Commun 2014, 50 (18), 2304-2307. 17. Jeremias, F.; Khutia, A.; Henninger, S. K.; Janiak, C., MIL-100(Al, Fe) as water adsorbents for heat transformation purposes-a promising application. J Mater Chem 2012, 22 (20), 10148-10151. 18. Seo, Y. K.; Yoon, J. W.; Lee, J. S.; Hwang, Y. K.; Jun, C. H.; Chang, J. S.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bourrelly, S.; Llewellyn, P. L.; Horcajada, P.; Serre, C.; Ferey, G., Energy-Efficient Dehumidification over Hierachically Porous MetalOrganic Frameworks as Advanced Water Adsorbents. Adv Mater 2012, 24 (6), 806-+. 19. Kim, S.-I.; Yoon, T.-U.; Kim, M.-B.; Lee, S.-J.; Hwang, Y. K.; Chang, J.-S.; Kim, H.-J.; Lee, H.-N.; Lee, U. H.; Bae, Y.-S., Metal–organic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production. Chemical Engineering Journal 2016, 286, 467-475. 20. Wang, J. Y.; Wang, R. Z.; Wang, L. W., Water vapor sorption performance of ACFCaCl2 and silica gel-CaCl2 composite adsorbents. Applied Thermal Engineering 2016, 100, 893-901. 21. Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. J Am Chem Soc 2014, 136 (11), 4369-4381. 22. Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D., Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 2014, 43 (16), 5594-617. 23. Horcajada, P.; Surble, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche, J. M.; Margiolaki, I.; Ferey, G., Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun 2007, (27), 2820-2822. 24. Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J. J.; Walton, K. S., Effect of Water Adsorption on Retention of Structure and Surface Area of Metal-Organic Frameworks. Ind Eng Chem Res 2012, 51 (18), 6513-6519. 25. Zhang, K.; Lively, R. P.; Dose, M. E.; Brown, A. J.; Zhang, C.; Chung, J.; Nair, S.; Koros, W. J.; Chance, R. R., Alcohol and water adsorption in zeolitic imidazolate frameworks. Chem Commun 2013, 49 (31), 3245-3247. 26. Seo, Y. K.; Yoon, J. W.; Lee, J. S.; Lee, U. H.; Hwang, Y. K.; Jun, C. H.; Horcajada, P.; Serre, C.; Chang, J. S., Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Micropor Mesopor Mat 2012, 157, 137-145. 27. Vimont, A.; Goupil, J.-M.; Lavalley, J.-C.; Daturi, M.; Surblé, S.; Serre, C.; Millange, F.; Férey, G.; Audebrand, N., Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. J Am Chem Soc 2006, 128 (10), 3218-3227. 28. Yoon, J. W.; Seo, Y. K.; Hwang, Y. K.; Chang, J. S.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E.; Llewellyn, P. L.; Serre, C.; Horcajada, P.; Greneche, J. M.; Rodrigues, A. E.; Ferey, G., Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew Chem Int Ed Engl 2010, 49 (34), 5949-52. 29. Marquez, A. G.; Demessence, A.; Platero-Prats, A. E.; Heurtaux, D.; Horcajada, P.; Serre, C.; Chang, J. S.; Ferey, G.; de la Pena-O'Shea, V. A.; Boissiere, C.; Grosso, D.; Sanchez, C., Green Microwave Synthesis of MIL-100(Al, Cr, Fe) Nanoparticles for ThinFilm Elaboration. Eur J Inorg Chem 2012, (32), 5165-5174. 30. Duan, S. X.; Li, J. X.; Liu, X.; Wang, Y. N.; Zeng, S. Y.; Shao, D. D.; Hayat, T., HFFree Synthesis of Nanoscale Metal-Organic Framework NMIL-100(Fe) as an Efficient Dye Adsorbent. Acs Sustain Chem Eng 2016, 4 (6), 3368-3378. 31. Jeremias, F.; Henninger, S. K.; Janiak, C., Ambient pressure synthesis of MIL- 100(Fe) MOF from homogeneous solution using a redox pathway. Dalton T 2016, 45 (20), 8637-8644. 32. Berdonosova, E. A.; Kovalenko, K. A.; Polyakova, E. V.; Klyamkin, S. N.; Fedin, V. P., Influence of Anion Composition on Gas Sorption Features of Cr-MIL-101 MetalOrganic Framework. J Phys Chem C 2015, 119 (23), 13098-13104. 33. Kusgens, P.; Rose, M.; Senkovska, I.; Frode, H.; Henschel, A.; Siegle, S.; Kaskel, S., Characterization of metal-organic frameworks by water adsorption. Micropor Mesopor Mat 2009, 120 (3), 325-330. 34. Bezverkhyy, I.; Weber, G.; Bellat, J. P., Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: Effect of temperature and pH. Micropor Mesopor Mat 2016, 219, 117-124. 35. Kolokathis, P. D.; Pantatosaki, E.; Papadopoulos, G. K., Atomistic Modeling of Water Thermodynamics and Kinetics within MIL-100(Fe). The Journal of Physical Chemistry C 2015, 119 (34), 20074-20084. 36. De Lange, M. F.; Gutierrez-Sevillano, J.-J.; Hamad, S.; Vlugt, T. J. H.; Calero, S.; Gascon, J.; Kapteijn, F., Understanding Adsorption of Highly Polar Vapors on Mesoporous MIL-100(Cr) and MIL-101(Cr): Experiments and Molecular Simulations. The Journal of Physical Chemistry C 2013, 117 (15), 7613-7622. 37. Qadir, N. U.; Said, S. A. M.; Mansour, R. B.; Mezghani, K.; Ul-Hamid, A., Synthesis, characterization, and water adsorption properties of a novel multi-walled carbon nanotube/MIL-100(Fe) composite. Dalton Transactions 2016, 45 (39), 15621-15633. 38. Chen, W.; Zhang, Z.; Bao, W.; Lai, Y.; Li, J.; Gan, Y.; Wang, J., Hierarchical mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O2 batteries. Electrochimica Acta 2014, 134, 293-301. 39. Mayo, S. L.; Olafson, B. D.; Goddard, W. A., Dreiding - a Generic Force-Field for Molecular Simulations. J Phys Chem-Us 1990, 94 (26), 8897-8909. 40. Wilmer, C. E.; Kim, K. C.; Snurr, R. Q., An Extended Charge Equilibration Method. The Journal of Physical Chemistry Letters 2012, 3 (17), 2506-2511. 41. Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q., RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simulat 2016, 42 (2), 81-101. 42. Dubbeldam, D.; Torres-Knoop, A.; Walton, K. S., On the inner workings of Monte Carlo codes. Molecular Simulation 2013, 39 (14-15), 1253-1292. 43. Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T., Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. The Journal of Chemical Physics 2004, 120 (20), 9665-9678. 44. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C., First principles methods using CASTEP. Z Kristallogr 2005, 220 (5-6), 567-570. 45. Liou, K.-H.; Tsou, N.-T.; Kang, D.-Y., Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes. Nanoscale 2015, 7 (39), 16222-16229. 46. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys Rev Lett 1996, 77 (18), 3865-3868. 47. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Phys Rev B 1976, 13 (12), 5188-5192. 48. Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S., Characterization of metal-organic frameworks by water adsorption. Micropor Mesopor Mat 2009, 120 (3), 325-330. 49. Kolokathis, P. D.; Pantatosaki, E.; Papadopouos, G. K., Atomistic Modeling of Water Thermodynamics and Kinetics within MIL-100(Fe). J Phys Chem C 2015, 119 (34), 20074-20084. 50. Kim, S. I.; Yoon, T. U.; Kim, M. B.; Lee, S. J.; Hwang, Y. K.; Chang, J. S.; Kim, H. J.; Lee, H. N.; Lee, U. H.; Bae, Y. S., Metal-organic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production. Chem Eng J 2016, 286, 467-475. 51. De Lange, M. F.; Gutierrez-Sevillano, J. J.; Hamad, S.; Vlugt, T. J. H.; Calero, S.; Gascon, J.; Kapteijn, F., Understanding Adsorption of Highly Polar Vapors on Mesoporous MIL-100(Cr) and MIL-101 (Cr): Experiments and Molecular Simulations. J Phys Chem C 2013, 117 (15), 7613-7622. 52. Akiyama, G.; Matsuda, R.; Kitagawa, S., Highly Porous and Stable Coordination Polymers as Water Sorption Materials. Chem Lett 2010, 39 (4), 360-361. 53. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W., Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. J Am Chem Soc 2013, 135 (28), 10525-10532. 54. Cliffe, M. J.; Wan, W.; Zou, X. D.; Chater, P. A.; Kleppe, A. K.; Tucker, M. G.; Wilhelm, H.; Funnell, N. P.; Coudert, F. X.; Goodwin, A. L., Correlated defect nanoregions in a metal-organic framework. Nat Commun 2014, 5. 55. Ghosh, P.; Colon, Y. J.; Snurr, R. Q., Water adsorption in UiO-66: the importance of defects. Chem Commun 2014, 50 (77), 11329-11331. 56. Fang, Z. L.; Bueken, B.; De Vos, D. E.; Fischer, R. A., Defect-Engineered MetalOrganic Frameworks. Angew Chem Int Edit 2015, 54 (25), 7234-7254. 57. Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gandara, F.; Burgi, H. B.; Yaghi, O. M., Definitive Molecular Level Characterization of Defects in UiO-66 Crystals. Angew Chem Int Edit 2015, 54 (38), 11162-11167. 58. Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P., Defect Engineering: Tuning the Porosity and Composition of the Metal-Organic Framework UiO-66 via Modulated Synthesis. Chem Mater 2016, 28 (11), 3749-3761. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67049 | - |
| dc.description.abstract | 本研究第一部分檢視分子模擬用在 MIL-100(Fe)水吸附上的合理性,說明結構
架設與力場參數的使用,利用分子模擬出的等溫吸附曲線與實驗比較,再利用不同 吸附下的水分布情形解釋等溫吸附曲線中水吸附的機制。 由於具有毒性的氟化氫是 MIL-100(Fe)的原料之一,在本研究的第二部分中, 我們嘗試利用較無毒性的氯離子與氫氧根離子進行氟離子的置換。研究的範圍包 括基態能量比較、等溫吸附曲線、水分子與載體的交互作用力。另一部分審視水吸 附時的微結構影響,討論陰離子、金屬與框架中窗型結構對於水吸附位置的變化。 第三部分討論缺陷結構 MIL-100(Fe)是否在水吸附時會有不同的吸附能力表 現,我們嘗試兩種不同的缺陷結構 : 金屬節點移除(metal-node-missing)、金屬簇移 除(cluster-missing)。兩種缺陷雖然對於整體結構的影響不大,但是金屬簇移除這種 缺陷卻會明顯影響低吸附量時水與 MIL-100(Fe)_Cl 間的交互作用力,交互作用力 的提升可能來自於結構親水性的增加,使水分子能在低濕度的時候較容易吸附在 吸附材上,可使水分子在低濕度時於孔洞內凝結。 | zh_TW |
| dc.description.abstract | MIL-100(Fe) is a metal-organic framework which has significant water adsorption
capacity. However, the structural stability for water vapor adsorption was found to be reduced if hydrofluoric acid (HF), served as mineralizing agent, is not used in the synthesis, although preferred because of eco-friendly consideration. We investigated the structural stability for water vapor adsorption of MIL-100(Fe) via density functional theory and molecular simulation techniques. Dreiding force field for MIL-100(Fe) and TIP4P for water were used in this study, and water adsorption isotherm showed improved consistency of results with experiment. We then differenced three kinds of terminal anions (fluoride, hydroxide, and void, i.e., no ion) on the structural stability for water vapor adsorption of MIL-100(Fe). We found that the replacement of hydroxide group would raise the energy of cluster by over 210 eV. Ideal MIL-100(Fe) with alternative anion (Cl and OH) show poor water adsorption capacity while the interacting energy of defective structure show significant increase at low loading region, which might enhance the water adsorption capacity. Further investigation into this interesting defective structure may lead to future use of catalyst, separation, or even the gate dielectrics in ICs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:18:25Z (GMT). No. of bitstreams: 1 ntu-106-R04524085-1.pdf: 4504381 bytes, checksum: fe88bf0c06a93f8eea1cd35697c55aa0 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 ................................................................................................................................................ i
摘要 ............................................................................................................................................... ii Abstract ........................................................................................................................................ iii Contents......................................................................................................................................... v List of Figures ............................................................................................................................. vii List of Tables ................................................................................................................................ ix Chapter 1 Introduction ............................................................................................................. 1 Chapter 2 Method ..................................................................................................................... 6 2.1 Construction of Crystal Models of MIL-100(Fe)_F .................................................... 6 2.2 Simulations of Adsorption Isotherms ........................................................................ 10 2.3 Calculation of Ground State Energy .......................................................................... 12 2.4 Calculation of Interacting Energy .............................................................................. 14 2.5 Binding Geometry...................................................................................................... 15 Chapter 3 Results and Discussion .......................................................................................... 16 3.1 Water Vapor Adsorption in MIL-100(Fe)_F ............................................................. 16 3.1.1 Water Vapor Adsorption Isotherm ........................................................................ 16 3.1.2 Adsorption Mechanism of Water Molecules in MIL-100(Fe) .............................. 17 3.2 Water Adsorption in MIL-100(Fe) with Alternative Terminals ................................ 21 3.2.1 Stability of MIL-100(Fe) with different terminals ................................................ 21 3.2.2 Water Vapor Adsorption Isotherm ........................................................................ 22 3.2.3 Interacting Energy ................................................................................................. 25 3.2.4 Binding Geometry ................................................................................................. 32 3.3 Prediction of Adsorption Behavior in Defective MIL-100(Fe) ................................. 37 3.3.1 Construction of Defective Structure ...................................................................... 37 3.3.2 Interacting Energy of MNM MIL-100(Fe) ............................................................ 39 3.3.3 Interacting Energy of CM MIL-100(Fe) ............................................................... 42 Chapter 4 Conclusions ........................................................................................................... 46 References ................................................................................................................................... 48 | |
| dc.language.iso | en | |
| dc.subject | 結構缺陷 | zh_TW |
| dc.subject | 吸附 | zh_TW |
| dc.subject | 蒙地卡羅方法 | zh_TW |
| dc.subject | 分子模擬 | zh_TW |
| dc.subject | MIL-100(Fe) | zh_TW |
| dc.subject | 計算化學 | zh_TW |
| dc.subject | Computational chemistry | en |
| dc.subject | Molecular simulation | en |
| dc.subject | Monte Carlo | en |
| dc.subject | Adsorption | en |
| dc.subject | Defective model | en |
| dc.subject | MIL-100(Fe) | en |
| dc.title | 金屬有機骨架之微結構與吸附特性之關聯 | zh_TW |
| dc.title | Relationships between microstructure of metal-organic
frameworks and their adsorption properties | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李雨,游琇?,張博凱 | |
| dc.subject.keyword | MIL-100(Fe),分子模擬,蒙地卡羅方法,吸附,結構缺陷,計算化學, | zh_TW |
| dc.subject.keyword | MIL-100(Fe),Molecular simulation,Monte Carlo,Adsorption,Defective model,Computational chemistry, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201703045 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
