請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67048完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳耀銘(Yaow-Ming Chen) | |
| dc.contributor.author | Chia-Hao Li | en |
| dc.contributor.author | 李佳豪 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:18:23Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.copyright | 2017-08-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-12 | |
| dc.identifier.citation | [1] Electromagnetic Compatibility (EMC), International Standard IEC 61000-3-2, 2005.
[2] H. Endo, T. Yamashita, and T. Sugiura, 'A high-power-factor buck converter,' IEEE PESC 1992, pp. 1071-1076 vol.2. [3] L. Solero, V. Serrao, M. Montuoro, and A. Romanelli, 'Low THD variable load buck PFC converter,' IEEE PESC 2008, pp. 906-912. [4] S. H. Yang et al., 'A Buck Power Factor Correction Converter with Predictive Quadratic Sinusoidal Current Modulation and Line Voltage Reconstruction,' IEEE Transactions on Industrial Electronics, vol. 63, no. 9, pp. 5912-5920, Sept. 2016. [5] P. R. Mohanty, A. K. Panda, and D. Das, 'An active PFC boost converter topology for power factor correction,' IEEE INDICON 2015, pp. 1-5. [6] R. Srinivasan and R. Oruganti, 'A unity power factor converter using half-bridge boost topology,' IEEE Transactions on Power Electronics, vol. 13, no. 3, pp. 487-500, May 1998. [7] K. Yao, Q. Li, and J. Lv, 'DCM boost PFC converter with optimum utilization control of switching cycles,' IEEE ECCE 2015, pp. 2048-2055. [8] Z. Guo, X. Ren, Y. Wu, Z. Zhang, and Q. Chen, 'A novel simplified variable on-time method for CRM boost PFC converter,' IEEE APEC 2017, pp. 1778-1784. [9] X. G. Zhang, B. Wang, H. Ding, and D. G. Xu, 'Study of CCM Boost PFC based on Simulink,' IEEE PEMC 2012, pp. 1756-1760. [10] A. R. Prasad, P. D. Ziogas, and S. Manias, 'A new active power factor correction method for single-phase buck-boost AC-DC converter,' IEEE APEC 1992, pp. 814-820. [11] J. Chen, D. Maksimovic, and R. W. Erickson, 'Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,' IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 320-329, March 2006. [12] B. Zhao, Ruiqing Ma, A. Abramovitz, and K. Smedley, 'Bridgeless buck-boost PFC rectifier with a bidirectional switch,' IEEE IPEMC-ECCE Asia 2016, pp. 2747-2751. [13] W. Wang, H. Liu, S. Jiang, and D. Xu, 'A novel bridgeless buck-boost PFC converter,' IEEE PESC 2008, pp. 1304-1308. [14] R. Philip and C. Sreeja, 'Single phase PFC using Buck-Boost converter,' IEEE AICERA/iCMMD 2014, pp. 1-5. [15] K. Mahmud and L. Tao, 'Power factor correction by PFC boost topology using average current control method,' IEEE GHTCE 2013, pp. 16-20. [16] J. P. Gegner and C. Q. Lee, 'Linear peak current mode control: a simple active power factor correction control technique for continuous conduction mode,' IEEE PESC 1996, pp. 196-202 vol.1. [17] P. S. Ninkovic, 'A novel constant-frequency hysteresis current control of PFC converters,' IEEE ISIE 2002, pp. 1059-1064 vol.4. [18] J. Yang, J. Zhang, X. Wu, Z. Qian, and M. Xu, 'Performance comparison between buck and boost CRM PFC converter,' IEEE COMPEL 2010, pp. 1-5. [19] K. H. Liu and Y. L. Lin, 'Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters,' IEEE PESC 1989, pp. 825-829 vol.2. [20] Y. Ohnuma and J. I. Itoh, 'A novel single-phase buck PFC AC-DC converter using an active buffer,' IEEE ECCE 2012, pp. 4223-4229. [21] C. R. Lee, W. T. Tsai, and H. S. Chung, 'A buck-type power-factor-correction circuit,' IEEE PEDS 2013, pp. 586-590. [22] J. Yang, A. N. Faris, and W. Zhang, 'Operation analysis for Buck PFC converter in discontinuous capacitor voltage mode,' IEEE PEAC 2014, pp. 1467-1472. [23] J. Zhang, M. M. Jovanovic, and F. C. Lee, 'Comparison between CCM single-stage and two-stage boost PFC converters,' IEEE APEC 1999, pp. 335-341 vol.1. [24] W. Y. Choi and J. S. Yoo, 'A Bridgeless Single-Stage Half-Bridge AC/DC Converter,' IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3884-3895, Dec. 2011. [25] C. A. Cheng, H. L. Cheng, and T. Y. Chung, 'A Novel Single-Stage High-Power-Factor LED Street-Lighting Driver With Coupled Inductors,' IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3037-3045, Sept.-Oct. 2014. [26] J. M. Alonso, A. J. Calleja, E. Lopez, J. Ribas ,and M. Rico-Secades, 'A novel single-stage constant-wattage high-power-factor electronic ballast,' IEEE Transactions on Industrial Electronics, vol. 46, no. 6, pp. 1148-1158, Dec 1999. [27] W. Y. Choi, J. M. Kwon, and B. H. Kwon, 'Efficient LED back-light power supply for liquid-crystal-display,' IET Electric Power Applications, vol. 1, no. 2, pp. 133-142, March 2007. [28] W. Y. Choi, J. M. Kwon, H. L. Do, and B. H. Kwon, 'Single-stage half-bridge converter with high power factor,' IET Electric Power Applications, vol. 152, no. 3, pp. 634-642, 6 May 2005. [29] M. F. da Silva et al., 'Analysis and design of a high-power-factor single-stage buck-boost half-bridge electronic ballast for electrodeless fluorescent lamps,' IEEE IECON 2011, pp. 2958-2963. [30] K. T. Kim, J. M. Kwon, H. M. Lee, and B. H. Kwon, 'Single-stage high-power factor half-bridge flyback converter with synchronous rectifier,' IET Power Electronics, vol. 7, no. 1, pp. 1-10, January 2014. [31] J. M. Alonso, A. J. Calleja, J. Ribas, E. L. Corominas, and M. Rico-Secades, 'Analysis and design of a novel single-stage high-power-factor electronic ballast based on integrated buck half-bridge resonant inverter,' IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 550-559, March 2004. [32] S. Y. Ou and H. P. Hsiao, 'Analysis and Design of a Novel Single-Stage Switching Power Supply With Half-Bridge Topology,' IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3230-3241, Nov. 2011. [33] Y. Wang, Y. Guan, K. Ren, W. Wang, and D. Xu, 'A Single-Stage LED Driver Based on BCM Boost Circuit and LLC Converter for Street Lighting System,' IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5446-5457, Sept. 2015. [34] B. H. Lee, C. E. Kim, K. B. Park, and G. W. Moon, 'A new Single-Stage PFC AC/DC converter with Voltage-Doubler Rectified Asymmetric Half-Bridge converter,' IEEE ICPE 2007, pp. 1179-1184. [35] G. Moschopoulos and P. K. Jain, 'A novel single-phase soft-switched rectifier with unity power factor and minimal component count,' IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 566-576, June 2004. [36] M. A. Co, D. S. I. Simonetti, and J. L. F. Vieira, 'High-power-factor electronic ballast based on a single power processing stage,' IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 809-820, Aug 2000. [37] S. M. S. I. Shakib and S. Mekhilef, 'A Frequency Adaptive Phase Shift Modulation Control Based LLC Series Resonant Converter for Wide Input Voltage Applications,' IEEE Transactions on Power Electronics, vol. 32, no. 11, pp. 8360-8370, Nov. 2017. [38] M. I. Shahzad, S. Iqbal, and S. Taib, 'A Wide Output Range HB-2LLC Resonant Converter With Hybrid Rectifier for PEV Battery Charging,' IEEE Transactions on Transportation Electrification, vol. 3, no. 2, pp. 520-531, June 2017. [39] H. M. Suryawanshi, S. S. Tanavade, V. B. Borghate, and M. A. Chaudhari, 'Design of resonant converter with the constraints of efficiency, power factor and converter KVA rating,' IEEE PESC 2006, pp. 1-6. [40] C. C. Lin, S. E. K. Kenneth and L. C. W. Albert, 'A novel robust control method for Series Parallel Resonant Converter (SPRC),' IEEE PESC 2006, pp. 1-6. [41] M. Kim, H. Jeong, B. Han, and S. Choi, 'New Parallel Loaded Resonant Converter with Wide Output Voltage Range,' IEEE Transactions on Power Electronics , vol.PP, no.99, pp.1-1 [42] T. Zeng, D. Y. Chen, and F. C. Lee, 'Variations of quasi-resonant DC-DC converter topologies,' IEEE PESC 1986, pp. 381-392. [43] B. Kang, K. S. Low, J. J. Soon, and Q. V. Tran, 'Single-Switch Quasi-Resonant DC–DC Converter for a Pulsed Plasma Thruster of Satellites,' IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4503-4513, June 2017. [44] L. Ruber and M. M. Jovanović, 'Analysis, design, and performance evaluation of asymmetrical half-bridge flyback converter for universal-line-voltage-range applications,' IEEE APEC 2017, pp. 2481-2487. [45] M. R. Ahmed, G. Calderon-Lopez, F. Bryan, R. Todd and A. J. Forsyth, 'Soft-switching SiC interleaved boost converter,' IEEE APEC 2015, pp. 941-947. [46] T. Takeda, T. Fujino, K. Ogasawara, S. Hosomi, H. Goto, and H. Abe, 'A thin transformer realized by optimizing the resonance voltage of an active clamp soft-switching converter,' IEEE INTELEC 2015, pp. 1-4. [47] J. K. Han, J. W. Kim, and G. W. Moon, 'A High-Efficiency Asymmetrical Half-Bridge Converter With Integrated Boost Converter in Secondary Rectifier,' IEEE Transactions on Power Electronics, vol. 32, no. 11, pp. 8237-8242, Nov. 2017. [48] P. Moo-Hyun, C. O. Yeon, J. S. Park, C. Y. Lim, J. K. Han, and Gun-Woo Moon, 'Wide-range ZVS asymmetric half-bridge converter with clamping switches for small DC offset current,' IEEE IPEMC-ECCE Asia 2016, pp. 2262-2269. [49] C. Fei, F. C. Lee, and Q. Li, 'High-efficiency High-power-density LLC Converter with an Integrated Planar Matrix Transformer for High Output Current Applications,' IEEE Transactions on Industrial Electronics , vol.PP, no.99, pp.1-1 [50] R. Ren, B. Liu, E. A. Jones, F. Wang, Z. Zhang, and D. Costinett, 'Accurate ZVS boundary in high switching frequency LLC converter,' IEEE ECCE 2016, pp. 1-6. [51] H. G. Han, Y. J. Choi, S. Y. Choi, and R. Y. Kim, 'A High Efficiency LLC Resonant Converter with Wide Ranged Output Voltage Using Adaptive Turn Ratio Scheme for a Li-Ion Battery Charger,' IEEE VPPC 2016, pp. 1-6. [52] G. Y. Jeong, 'High efficiency asymmetrical half-bridge flyback converter using a new voltage-driven synchronous rectifier,' IET Power Electronics, vol. 3, no. 1, pp. 18-32, January 2010. [53] B. R. Lin, C. C. Yang, and D. Wang, 'Analysis, design and implementation of an asymmetrical half-bridge converter,' IEEE ICIT 2005, pp. 1209-1214. [54] T. M. Chen and C. L. Chen, 'Characterization of asymmetrical half bridge flyback converter,' IEEE PESC 2002, pp. 921-926 vol.2. [55] S. Korotkov, R. Miffakhutdinov, A. Nemchinov, and S. Fraidlin, 'Asymmetrical half-bridge in a single stage PFC AC/DC converter,' IEEE APEC 1997, pp. 484-488 vol.1. [56] B. H. Lee, C. E. Kim, K. B. Park, and G. W. Moon, 'A new Single-Stage PFC AC/DC converter with Voltage-Doubler Rectified Asymmetric Half-Bridge converter,' IEEE ICPE 2007, pp. 1179-1184. [57] M. Veerachary and J. Prakash, 'Low source current ripple soft-switching boost converter,' IEEE PESTSE 2016, pp. 1-6. [58] Q. Wei, Z. Xi, and Z. Li, 'Design and operation analysis of a novel coupled-inductor based soft switching boost converter with an auxiliary switch,' IEEE IPEMC-ECCE Asia 2016, pp. 2534-2537. [59] K. C. Tseng, F. J. Chiou, J. Z. Chen, and J. H. Kang, 'Study and implementation of asymmetrical half-bridge converter,' IEEE ISNE 2013, pp. 502-505. [60] M. Arias, D. G. Lamar, F. F. Linera, D. Balocco, A. Aguissa Diallo and J. Sebastián, 'Design of a Soft-Switching Asymmetrical Half-Bridge Converter as Second Stage of an LED Driver for Street Lighting Application,' IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1608-1621, March 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67048 | - |
| dc.description.abstract | 本論文提出一個具耦合電感之單級非對稱半橋功因校正轉換器。此轉換器是將一個非對稱半橋轉換器與一組耦合電感及一個阻隔二極體做整合所發展而來。透過此組耦合電感及此阻隔二極體,本論文所提出之轉換器可達成具buck-boost型功率因數校正功能之單級交流直流電能轉換。因此,此轉換器可在不使用額外的功率開關及控制電路的情況下,在通用輸入電壓條件下達成趨近於一之功率因數及低總諧波失真。另外,此轉換器之兩個功率開關在通用輸入電壓條件下皆可達成零電壓切換以減少切換損失。因此,此轉換器可提升交流直流轉換器之整體效率及功率密度。故,本論文所提出之轉換器在通用輸入電壓條件下具有功率因數趨近於一、總諧波失真低、元件數量少、控制策略簡單,以及轉換效率高之特點。最後,透過電腦模擬及實作一台100W之原型電路,來驗證本論文所提出的具耦合電感之單級非對稱半橋功因校正轉換器之概念及功能。 | zh_TW |
| dc.description.abstract | A single-stage asymmetrical half-bridge (AHB) power factor correction (PFC) converter with coupled inductors is proposed in this thesis. The proposed converter is developed from the combination of an AHB converter and a set of coupled inductors along with a blocking diode. By applying the set of coupled inductors and the blocking diode, the proposed converter can achieve single-stage AC-DC conversion with the buck-boost type PFC. Hence, the proposed converter can provide near unity power factor (PF) and low total harmonic distortion (THD) under the universal input condition without using any extra power switch and control circuit. In addition, the proposed converter can achieve zero-voltage switching (ZVS) operation for both of the power switches under the universal input condition to reduce switching loss. As a result, the proposed converter can improve the overall conversion efficiency and power density of the AC-DC converter. Therefore, the proposed converter features the advantages of near unity PF, low THD, little component counts, simple control strategy, and high circuit efficiency under the universal input condition. Computer simulation and hardware experimental results of a 100W prototype circuit are presented to verify the effectiveness of the proposed single-stage AHB PFC converter with coupled inductors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:18:23Z (GMT). No. of bitstreams: 1 ntu-106-R04921026-1.pdf: 3095363 bytes, checksum: adba7b054aae80ab7597e8407cd47556 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Research Background and Motive 1 1.2 Organization 3 Chapter 2 Review of AC-DC Converters with Power Factor Correction 4 2.1 Power Factor Correction 4 2.2 Family of AC-DC Converters 9 2.2.1 Two-Stage AC-DC Converters 9 2.2.2 Modern Single-Stage AC-DC PFC Converters 10 Chapter 3 The Proposed Single-Stage AHB PFC Converter with Coupled Inductors 12 3.1 Derivation of the Proposed Circuit Topology 12 3.1.1 Selection of the Circuit Topology 12 3.1.2 Integration of the Proposed Circuit Topology 15 3.2 Operation Modes 18 3.3 Steady State Analysis and PFC Cell DCM Boundary Condition 26 3.3.1 Steady State Analysis 26 3.3.2 PFC Cell DCM Boundary Condition 29 Chapter 4 Circuit Design and Implementation 32 4.1 Circuit Specification and Component Design 32 4.1.1 Circuit Specification 32 4.1.2 Power Stage Component Design 34 4.1.3 Control Stage Component Design 35 4.2 Control Strategy Implementation 39 Chapter 5 Simulation and Experimental Results 43 5.1 PFC Function and Output Voltage Regulation 44 5.2 ZVS Operation 46 5.3 Performance Measurement 49 Chapter 6 Conclusions and Suggested Future Works 52 6.1 Conclusions 52 6.2 Suggested Future Works 53 REFERENCE 54 | |
| dc.language.iso | en | |
| dc.subject | 交流轉直流 | zh_TW |
| dc.subject | 零電壓切換 | zh_TW |
| dc.subject | 功率因數校正 | zh_TW |
| dc.subject | 非對稱半橋 | zh_TW |
| dc.subject | 耦合電感 | zh_TW |
| dc.subject | 單級 | zh_TW |
| dc.subject | Single-Stage | en |
| dc.subject | AC-DC | en |
| dc.subject | AHB | en |
| dc.subject | PFC | en |
| dc.subject | Coupled Inductors | en |
| dc.subject | ZVS | en |
| dc.title | 具耦合電感之單級非對稱半橋功因校正轉換器 | zh_TW |
| dc.title | A Single-Stage Asymmetrical Half-Bridge Power Factor Correction Converter with Coupled Inductors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳德玉(Dan Chen),邱煌仁(Huang-Jen Chiu),陳景然(Ching-Jan Chen) | |
| dc.subject.keyword | 單級,交流轉直流,非對稱半橋,功率因數校正,耦合電感,零電壓切換, | zh_TW |
| dc.subject.keyword | Single-Stage,AC-DC,AHB,PFC,Coupled Inductors,ZVS, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU201702920 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
