請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66984
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賈景山(Jean-San Chia) | |
dc.contributor.author | Yu-Rou Lan | en |
dc.contributor.author | 藍語柔 | zh_TW |
dc.date.accessioned | 2021-06-17T01:16:22Z | - |
dc.date.available | 2022-08-14 | |
dc.date.copyright | 2017-09-13 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | 1. Hamada, S. and H.D. Slade, Biology, Immunology, and Cariogenicity of Streptococcus mutans. Microbiol Rev, 1980. 44(2): p. 331-384.
2. Welin-Neilands, J. and G. Svensater, Acid tolerance of biofilm cells of Streptococcus mutans. Appl Environ Microbiol, 2007. 73(17): p. 5633-5638. 3. Krzysciak, W., et al., The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis, 2014. 33(4): p. 499-515. 4. Loesche, W.J., Role of Streptococcus mutans in Human Dental Decay. Microbiol Rev, 1986. 50(4): p. 353-380. 5. Mylonakis, E. and S.B. Calderwood, Infective Endocarditis in Adults. New Engl J Med, 2001. 345(18): p. 1318-1330. 6. Al-Senaidi, K.S., A.A. Abdelmogheth, and A.A. Balkhair, Complicated Subacute Bacterial Endocarditis in a Patient with Ventricular Septal Defect. ultan Qaboos Univ Med J, 2014. 14(1): p. 130-133. 7. Bowen, W.H. and H. Koo, Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res, 2011. 45(1): p. 69-86. 8. Fujiwara, T., et al., Deletion and reintroduction of glucosyltransferase genes of Streptococcus mutans and role of their gene products in sucrose dependent cellular adherence. Microb Pathog, 1996. 20: p. 225–233. 9. Shiroza, T., S. Ueda, and H.K. Kuramizu, Sequence Analysis of the gtfB Gene from Streptococcus mutans. J Bacteriol, 1987. 169(9): p. 4263-4270. 10. Yoshio, J.N. and K.K. Howard, Mechanism of Streptococcus mutans Glucosyltransferases: Hybrid-Enzyme Analysis. J Bacteriol, 1992. 173(17): p. 5639-5646. 11. Banas, J.A. and M.M. Vickerman, Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med, 2003. 14(2): p. 89-99. 12. Hannig, C., et al., Electron microscopic detection and activity of glucosyltransferase B, C, and D in the in situ formed pellicle. Arch Oral Biol, 2008. 53(11): p. 1003-1010. 13. Tsai, Y.-W., et al., Three-dimensional modelling of the catalytic domain ofStreptococcus mutans glucosyltransferase GtfB. FEMS Microbiol Lett, 2000. 188: p. 75-79. 14. Bleiziffer, I., et al., The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein. PLoS Pathog, 2017. 13(1): p. e1006110. 15. Chia, J.S., et al., Antigenicity of a Synthetic Peptide from Glucosyltransferases of Streptococcus mutans in Humans. Infect Immun, 2007. 65(3): p. 1126–1130. 16. Smith, D.J. and M.A. Taubman, Effect of Local Deposition of Antigen on Salivary Immune Responses and Reaccumulation of Mutans Streptococci. J Clin Immunol, 1990. 10(5): p. 273-281. 17. Smith, D.J., M.A. Taubman, and J.L. Ebersole, Local and Systemic Antibody Response to Oral Administration of Glucosyltransferase Antigen Complex. Infection and Immunity, 1980. 28(2): p. 441-450. 18. Chia, J.S., et al., Human T-cell responses to the glucosyltransferases of Streptococcus mutans. Clin Diagn Lab Immunol, 2001. 8(2): p. 441-445. 19. Nolte, M.A., et al., Isolation of the intact white pulp. Quantitative and qualitative analysis of the cellular composition of the splenic compartments. Eur J Immunol, 2000. 30: p. 626-634. 20. Nolte, M.A., et al., The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors, Immunology, 2002. 106: p. 299–307. 21. Cesta, M.F., Normal structure, function, and histology of the spleen. Toxicol Pathol, 2006. 34(5): p. 455-465. 22. Mebius, R.E. and G. Kraal, Structure and function of the spleen. Nat Rev Immunol, 2005. 5(8): p. 606-616. 23. Taniguchi, L.U., M.D. Correia, and F.G. Zampieri, Overwhelming post-splenectomy infection: narrative review of the literature. Surg Infect (Larchmt), 2014. 15(6): p. 686-693. 24. Sinwar, P.D., Overwhelming post splenectomy infection syndrome - review study. Int J Surg, 2014. 12(12): p. 1314-1316. 25. Zouali, M. and Y. Richard, Marginal zone B-cells, a gatekeeper of innate immunity. Front Immunol, 2011. 2: p. 63. 26. Pillai, S., A. Cariappa, and S.T. Moran, Marginal zone B cells. Annu Rev Immunol, 2005. 23: p. 161-196. 27. Martin, F., A.M. Oliver, and J.F. Kearney, Marginal Zone and B1 B Cells Unite in the Early Response agains T-Independent Blood-Borne Particulate Antigens. Immunity, 2001. 14(5): p. 617-629. 28. Cerutti, A., M. Cols, and I. Puga, Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol, 2013. 13(2): p. 118-132. 29. Tanigaki, K., et al., Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol, 2002. 3(5): p. 443-450. 30. Bluestone, J.A., K. Herold, and G. Eisenbarth, Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 2010. 464(7293): p. 1293-1300. 31. Ercolini, A.M. and S.D. Miller, The role of infections in autoimmune disease. Clin Exp Immunol, 2009. 155(1): p. 1-15. 32. Adderson, E.E., et al., Molecular Analysis of Polyreactive Monoclonal Antibodies from Rheumatic Carditis: Human Anti-N-Acetylglucosamine Anti-Myosin Antibody V Region Genes. J Immunol, 1998. 161: p. 2020–2031. 33. van den Berg, B., et al., Guillain-Barre syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol, 2014. 10(8): p. 469-482. 34. Cusick, M.F., J.E. Libbey, and R.S. Fujinami, Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol, 2012. 42(1): p. 102-111. 35. King, J.K. and K.H. Costenbader, Characteristics of patients with systemic lupus erythematosus (SLE) and non-Hodgkin's lymphoma (NHL). Clin Rheumatol, 2007. 26(9): p. 1491-1494. 36. Han, S., et al., Mechanisms of autoantibody production in systemic lupus erythematosus. Front Immunol, 2015. 6: p. 228. 37. Fu, S.M., et al., Anti-dsDNA Antibodies are one of the many autoantibodies in systemic lupus erythematosus. F1000Res, 2015. 4(F1000 Faculty Rev): p. 939. 38. Boes, M., Role of natural and immune IgM antibodies in immune responses. Mol Immunol, 2000. 37: p. 1141–1149. 39. Woof, J.M. and M.A. Kerr, The function of immunoglobulin A in immunity. J Pathol, 2006. 208(2): p. 270-282. 40. Yan, H., et al., Multiple Functions of Immunoglobulin A in Mucosal Defense against Viruses: an In Vitro Measles Virus Model. J Virol, 2002. 76(21): p. 10972-10979. 41. Chen, K. and A. Cerutti, The function and regulation of immunoglobulin D. Curr Opin Immunol, 2011. 23(3): p. 345-352. 42. Platts-mills, T.A.E., The Role of Immunoglobulin E in Allergy and Asthma. Am J Respir Crit Care Med, 2001. 164: p. S1-S5. 43. Schroeder, H.W., Jr. and L. Cavacini, Structure and function of immunoglobulins. J Allergy Clin Immunol, 2010. 125(2 Suppl 2): p. S41-52. 44. Martin, R.M., J.L. Brady, and A.M. Lew, The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J Immunol Methods, 1998. 212: p. 187–192. 45. Schreier, P.H., et al., Multiple differences between the nucleic acid sequences of the IgG2a and IgG2a alleles of the mouse. Proc. NatL Acad. Sci., 1981. 78(7): p. 4495-4499. 46. Davis, R.S., et al., Differential B cell expression of mouse Fc receptor homologs. Int Immunol, 2004. 16(9): p. 1343-1353. 47. Guilliams, M., et al., The function of Fcgamma receptors in dendritic cells and macrophages. Nat Rev Immunol, 2014. 14(2): p. 94-108. 48. Merc, D.K., et al., Fate of Free DNA and Transformation of the Oral Bacterium Streptococcus gordonii DL1 by Plasmid DNA in Human Saliva. Appl Environ Microbiol, 1999. 65(1): p. 6-10. 49. Chia, J.S., C.Y. Yeh, and J.Y. Chen, Identification of a fibronectin binding protein from Streptococcus mutans. Infect Immun, 2000. 68: p. 1864–1870. 50. Jung, C.J., et al., Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. Mol Microbiol, 2009. 74(4): p. 888-902. 51. Kearney, J.F., Innate-like B cells. Springer Semin Immunopathol, 2005. 26(4): p. 377-383. 52. Zhou, H.S., D.P. Liu, and C.C. Liang, Challenges and strategies: the immune responses in gene therapy. Med Res Rev, 2004. 24(6): p. 748-761. 53. Chen, Y., et al., Identification of methylated CpG motifs as inhibitors of the immune stimulatory CpG motifs. Gene Therapy, 2001. 8: p. 1024–1032. 54. Schwartz, D.A., et al., CpG Motifs in Bacterial DNA Cause Inflammation in the Lower Respiratory Tract. J Clin Invest, 1997. 100: p. 68–73. 55. Deng, G.M., et al., Intra-articularly localized bacterial DNA containing CpG. Nat Med, 1999. 5(6): p. 702-705. 56. Klinman, D.M., G. Yamshchikov, and Y. Ishigatsubo, Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol, 1997. 158: p. 3635-3639. 57. Gilkeson, G.S., A.M. Pippen, and D.S. Pisetsky, Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J Clin Invest, 1995. 95(3): p. 1398-402. 58. Gilkeson, G.S., J.P. Grudier, and D.S. Pisetsky, The Antibody Response of Normal Mice to Immunization with Single-Stranded DNA of Various Species Origin. Clin Immunol Immunopathol, 1989. 51: p. 362-371. 59. Gilkeson, G.S., et al., Induction of anti-double stranded DNA antibodies in normal mice by immunization with bacterial DNA. J Immunol, 1989. 142: p. 1482-1486. 60. He, B., X. Qiao, and A. Cerutti, CpG DNA Induces IgG Class Switch DNA Recombination by Activating Human B Cells through an Innate Pathway That Requires TLR9 and Cooperates with IL-10. J Immunol, 2004. 173(7): p. 4479-4491 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66984 | - |
dc.description.abstract | 細菌和病毒的感染可能會使宿主產生自體免疫疾病,在感染性心內膜炎的患者體內,也可以發現許多自體抗體生成。我們先前的研究發現,若將人類口腔中常見的轉糖鏈球菌 (Streptococcus mutans) 從尾靜脈感染老鼠,則老鼠在五天內就會產生抗雙股去氧核醣核酸抗體 (anti-dsDNA antibody),但其中的機制目前尚不清楚。我們從受感染的老鼠血清中純化出抗雙股去氧核醣核酸抗體,並且發現這些抗體可以專一性辨認轉糖鏈球菌的表面蛋白葡糖基轉移酶 B (glucosyltransferase B, GtfB)。從尾靜脈注射GtfB重組蛋白至老鼠體內,同樣可以使老鼠產生抗雙股去氧核醣核酸抗體,表示GtfB在產生抗雙股去氧核醣核酸抗體扮演一定的角色。GtfB可以結合至轉糖鏈球菌的染色體,但無法結合至小牛胸線之去氧核醣核酸 (calf thymus DNA)。為了研究抗體產生的機制,我們也將轉糖鏈球菌和GtfB從尾靜脈打入邊緣區B細胞缺失 (marginal zone B cell knockout) 的老鼠體內,發現牠們無法產生抗雙股去氧核醣核酸抗體,表示邊緣區B細胞扮演重要角色。以上結果顯示,血液循環中的GtfB可以結合細菌之去氧核醣核酸,進而刺激邊緣區B細胞產生抗雙股去氧核醣核酸抗體。 | zh_TW |
dc.description.abstract | Infections play roles in the development of autoimmune diseases. Our previous data showed that bacteremia caused by Streptococcus mutans, an oral commensal, induces autoantibody production within five days, but the mechanism remains unclear. Here, we purified the anti-dsDNA antibodies isolated from mice with Streptococcus mutans bacteremia, and identified a bacterial surface protein, glucosyltransferase B (GtfB), that can specifically be recognized by the anti-dsDNA antibodies. Intravascularly injection of recombinant GtfB induces anti-dsDNA antibody production in C57BL/6 mice, confirming the role of GtfB. GtfB can specifically bind to S. mutans genomic DNA, not calf thymus DNA, in a dose-dependent manner. Intravascularly injection of S. mutans or recombinant GtfB failed to induce the anti-dsDNA antibody production in marginal zone B cell knockout mice, suggesting the role of marginal zone B cells. Taken together, our data suggested GtfB stimulates marginal zone B cells to produce anti-dsDNA antibody through binding with bacterial DNA. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:16:22Z (GMT). No. of bitstreams: 1 ntu-106-R04449009-1.pdf: 1353555 bytes, checksum: d227b832bb1d5c1b83a31a6823464d3c (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II Abstract III 中文摘要 IV Contents V 表目錄 VIII 圖目錄 IX Chapter 1. Introduction 1 1.1 Streptococcus mutans 1 1.2 Glucosyltransferase 1 1.3 Spleen 2 1.4 Marginal zone B cell (MZ B) 3 1.5 Autoantibody production 4 1.6 Antibody isotypes and subclasses 5 Chapter 2.Purpose and Specific Aim 7 Chapter 3. Materials and methods 8 3.1 Animals 8 3.2 Splenectomy procedures 8 3.3 Bacterial strains and growth conditions 9 3.4 Streptococcal cell wall-associated (CA) proteins extraction 9 3.5 Construction of His-tagged GtfB in S. mutans 10 3.6 Chromosomal integration of His-tagged GtfB in S. mutans 11 3.7 Recombinant protein expression and purification 12 3.8 Extraction of S. mutans genomic DNA 12 3.9 Enzyme-linked immunosorbent assay (ELISA) 13 3.10 DNA-binding activity assay 14 3.11 Antibody elution from ELISA plate wells 15 3.12 Anti-dsDNA antibody purification from SLE sera 15 3.13 DNA-binding protein purification from S. mutans CA protein 16 3.14 Western blotting (WB) 16 3.15 Statistical analysis 17 Chapter 4. Results 18 4.1 Spleen plays a role in anti-bacteria and anti-dsDNA IgG production in bacteremia mouse model 18 4.2 Spleen plays a critical role in the production of distinct antibody subtypes against circulating bacteria 18 4.3 Marginal zone B cells play a crucial role in anti-dsDNA antibody production 19 4.4 Eluted anti-dsDNA antibody recognizes S. mutans GtfB 20 4.5 GtfB induces anti-dsDNA antibody production in a MZ B-dependent manner. 21 4.6 DNA-binding ability of GtfB 21 Chapter 5. Discussion 23 5.1 Bacterial protein GtfB is important for anti-dsDNA antibody production 23 5.2 The DNA-binding activity of GtfB 23 5.3 The difference between eukaryotic DNA and bacterial DNA 24 5.4 GtfB may activate MZ B cells through TLR9 signaling 24 Chapter 6. References 26 Chapter 7. Table 33 Chapter 8. Figures 34 | |
dc.language.iso | en | |
dc.title | 探討血液循環系統中轉糖鏈球菌之葡糖基轉移酶B引發抗雙股去氧核糖核酸抗體生成之機制 | zh_TW |
dc.title | Mechanism of Anti-dsDNA Antibody Production Induced by Circulating Streptococcus mutans GtfB | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鍾筱菁(Chiau-Jing Jung),顧家綺(Chia-Chi Ku) | |
dc.subject.keyword | 轉糖鏈球菌,葡糖基轉移?B,抗雙股去氧核醣核酸抗體,邊緣區B細胞,細菌雙股去氧核醣核酸, | zh_TW |
dc.subject.keyword | Streptococcus mutans,glucosyltransferase B,anti-dsDNA antibody,marginal zone B cell,bacterial DNA, | en |
dc.relation.page | 45 | |
dc.identifier.doi | 10.6342/NTU201703053 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。