請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66978
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳正平(Jen-Ping Chen) | |
dc.contributor.author | Kuan-Chih Wang | en |
dc.contributor.author | 王冠智 | zh_TW |
dc.date.accessioned | 2021-06-17T01:16:13Z | - |
dc.date.available | 2019-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | Appel, K. W., S. J. Roselle, R. C. Gilliam, and J. E. Pleim, 2010: Sensitivity of the Community Multiscale Air Quality (CMAQ) model v4.7 results for the eastern United States to MM5 and WRF meteorological drivers. Geosci. Model Dev., 3, 169-188.
Binkowski, F. S., and S. J. Roselle, 2003: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. Journal of Geophysical Research: Atmospheres, 108. Brunner, D., N. Savage, O. Jorba, B. Eder, L. Giordano, A. Badia, A. Balzarini, R. Baró, R. Bianconi, C. Chemel, G. Curci, R. Forkel, P. Jiménez-Guerrero, M. Hirtl, A. Hodzic, L. Honzak, U. Im, C. Knote, P. Makar, A. Manders-Groot, E. van Meijgaard, L. Neal, J. L. Pérez, G. Pirovano, R. San Jose, W. Schröder, R. S. Sokhi, D. Syrakov, A. Torian, P. Tuccella, J. Werhahn, R. Wolke, K. Yahya, R. Zabkar, Y. Zhang, C. Hogrefe, and S. Galmarini, 2015: Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2. Atmospheric Environment, 115, 470-498. Burtscher, H., 2005: Physical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 36, 896-932. Byun, D., and K. L. Schere, 2006: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Applied Mechanics Reviews, 59, 51-77. Castellanos, P., L. T. Marufu, B. G. Doddridge, B. F. Taubman, J. J. Schwab, J. C. Hains, S. H. Ehrman, and R. R. Dickerson, 2011: Ozone, oxides of nitrogen, and carbon monoxide during pollution events over the eastern United States: An evaluation of emissions and vertical mixing. Journal of Geophysical Research: Atmospheres, 116. Chen, J.-P., 1999: Particle nucleation by recondensation in combustion exhausts. Geophysical Research Letters, 26, 2403-2406. Cheng, Y.-C., C.-S. Liang, J.-Y. Syu, Y.-Y. Chang, Y.-L. Yan, S.-J. Chen, C.-C. Chen, and W.-Y. Lin, 2015: Characteristics of Aerosol Extinction Coefficient in Taipei Metropolitan Atmosphere. Aerosol and Air Quality Research, 15, 1823-1835. Chow, J. C., and J. G. Watson, 1997: Imperial Valley/Mexicali Cross Border PM10 Transport Study. DRI Document No. 8623.2F. Covert, D. S., V. N. Kapustin, P. K. Quinn, and T. S. Bates, 1992: New particle formation in the marine boundary layer. Journal of Geophysical Research: Atmospheres, 97, 20581-20589. Elleman, R. A., and D. S. Covert, 2010: Aerosol size distribution modeling with the Community Multiscale Air Quality modeling system in the Pacific Northwest: 3. Size distribution of particles emitted into a mesoscale model. Journal of Geophysical Research: Atmospheres, 115. European Centre for Medium-Range Weather Forecasts, 2009: ERA-Interim Project, http://rda.ucar.edu/datasets/ds627.0. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Fahey, K. M., G. Sarwar, K. W. Appel, and C. G. Nolte, 2014: Evaluation of Updated CMAQ Aerosol Treatments with a Focus on Ultrafine Particles. 13th Annual CMAS Conference, University of North Carolina at Chapel Hill. Flynn, C. M., K. E. Pickering, J. H. Crawford, L. Lamsal, N. Krotkov, J. Herman, A. Weinheimer, G. Chen, X. Liu, J. Szykman, S.-C. Tsay, C. Loughner, J. Hains, P. Lee, R. R. Dickerson, J. W. Stehr, and L. Brent, 2014: Relationship between column-density and surface mixing ratio: Statistical analysis of O3 and NO2 data from the July 2011 Maryland DISCOVER-AQ mission. Atmospheric Environment, 92, 429-441. Geiser, M., and W. G. Kreyling, 2010: Deposition and biokinetics of inhaled nanoparticles. Particle and Fibre Toxicology, 7, 2. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 3181-3210. Huang, G.-D., 2005: Effects of Engine Exhaust on Aerosol Size Spectrum (In Chinese: 引擎排放對氣膠粒徑譜之影響). Master Thesis, Department of Atmospheric Sciences, National Taiwan University, 1-59 pp. ICRP, 1994: ICRP Publication 66: Human Respiratory Tract Model for Radiological Protection. Annals of the ICRP, 24, 1-482. Jiang, W., S. Smyth, É. Giroux, H. Roth, and D. Yin, 2006: Differences between CMAQ fine mode particle and PM2.5 concentrations and their impact on model performance evaluation in the lower Fraser valley. Atmospheric Environment, 40, 4973-4985. Karjalainen, P., L. Pirjola, J. Heikkilä, T. Lähde, T. Tzamkiozis, L. Ntziachristos, J. Keskinen, and T. Rönkkö, 2014: Exhaust particles of modern gasoline vehicles: A laboratory and an on-road study. Atmospheric Environment, 97, 262-270. Kawai, T., Y. Goto, and M. Odaka, 2004: Influence of Dilution Process on Engine Exhaust Nano-Particles. SAE International. Khalek, I. A., D. B. Kittelson, and F. Brear, 2000: Nanoparticle Growth During Dilution and Cooling of Diesel Exhaust: Experimental Investigation and Theoretical Assessment. SAE International. Kittelson, D. B., 1998: Engines and nanoparticles: A review. Journal of Aerosol Science, 29, 575-588. Kittelson, D. B., W. F. Watts, and J. P. Johnson, 2006a: On-road and laboratory evaluation of combustion aerosols—Part1: Summary of diesel engine results. Journal of Aerosol Science, 37, 913-930. Kittelson, D. B., W. F. Watts, J. P. Johnson, J. J. Schauer, and D. R. Lawson, 2006b: On-road and laboratory evaluation of combustion aerosols—Part 2: Summary of spark ignition engine results. Journal of Aerosol Science, 37, 931-949. Koschmieder, H., 1924: Theorie der horizontalen sichtweite. Beiträge zur Physik der freien Atmosphäre, 12, 33-55. Kreyling, W. G., M. Semmler, F. Erbe, P. Mayer, S. Takenaka, H. Schulz, G. Oberdörster, and A. Ziesenis, 2002: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health, Part A, 65, 1513-1530. Kreyling, W. G., M. Semmler-Behnke, J. Seitz, W. Scymczak, A. Wenk, P. Mayer, S. Takenaka, and G. Oberdörster, 2009: Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhalation Toxicology, 21, 55-60. Kuo, L.-W., 2009: Experimental and Numerical Study on the Mechanism of Nucleation by Recondensation (In Chinese: 再凝結核化機制的實驗與數值模擬). Master Thesis, Department of Atmospheric Sciences, National Taiwan University, 1-68 pp. Li, M., Q. Zhang, J. I. Kurokawa, J. H. Woo, K. He, Z. Lu, T. Ohara, Y. Song, D. G. Streets, G. R. Carmichael, Y. Cheng, C. Hong, H. Huo, X. Jiang, S. Kang, F. Liu, H. Su, and B. Zheng, 2017: MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys., 17, 935-963. Li, N., J.-P. Chen, I. C. Tsai, Q. He, S.-Y. Chi, Y.-C. Lin, and T.-M. Fu, 2016: Potential impacts of electric vehicles on air quality in Taiwan. Science of The Total Environment, 566–567, 919-928. Maricq, M. M., 2007: Chemical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 38, 1079-1118. Maricq, M. M., D. H. Podsiadlik, and R. E. Chase, 1999: Examination of the Size-Resolved and Transient Nature of Motor Vehicle Particle Emissions. Environmental Science & Technology, 33, 1618-1626. Marti, J. J., R. J. Weber, P. H. McMurry, F. Eisele, D. Tanner, and A. Jefferson, 1997: New particle formation at a remote continental site: Assessing the contributions of SO2 and organic precursors. Journal of Geophysical Research: Atmospheres, 102, 6331-6339. Mäkelä, J. M., P. Aalto, V. Jokinen, T. Pohja, A. Nissinen, S. Palmroth, T. Markkanen, K. Seitsonen, H. Lihavainen, and M. Kulmala, 1997: Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophysical Research Letters, 24, 1219-1222. Rönkkö, T., A. Virtanen, K. Vaaraslahti, J. Keskinen, L. Pirjola, and M. Lappi, 2006: Effect of dilution conditions and driving parameters on nucleation mode particles in diesel exhaust: Laboratory and on-road study. Atmospheric Environment, 40, 2893-2901. Schneider, J., N. Hock, S. Weimer, S. Borrmann, U. Kirchner, R. Vogt, and V. Scheer, 2005: Nucleation Particles in Diesel Exhaust: Composition Inferred from In Situ Mass Spectrometric Analysis. Environmental Science & Technology, 39, 6153-6161. Semmler-Behnke, M., W. G. Kreyling, J. Lipka, S. Fertsch, A. Wenk, S. Takenaka, G. Schmid, and W. Brandau, 2008: Biodistribution of 1.4- and 18-nm Gold Particles in Rats. Small, 4, 2108-2111. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X.-y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. Taiwan Environmental Protection Administration (TWEPA), 2010: Taiwan Emission Data System (TEDS), Version 8.1, http://teds.epa.gov.tw/, Retrieved 2016/04/10. ——, 2016: Number and Density of Registered Motor Vehicles (In Chinese: 機動車輛登記數及密度), Period 2016/09, http://erdb.epa.gov.tw/, Retrieved 2016/12/01. Vautard, R., M. D. Moran, E. Solazzo, R. C. Gilliam, V. Matthias, R. Bianconi, C. Chemel, J. Ferreira, B. Geyer, A. B. Hansen, A. Jericevic, M. Prank, A. Segers, J. D. Silver, J. Werhahn, R. Wolke, S. T. Rao, and S. Galmarini, 2012: Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations. Atmospheric Environment, 53, 15-37. Watt, J., D. Jarrett, and R. Hamilton, 2008: Dose-response functions for the soiling of heritage materials due to air pollution exposure. Science of The Total Environment, 400, 415-424. Whitby, K. T., 1978: The physical characteristics of sulfur aerosols. Atmospheric Environment (1967), 12, 135-159. Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J. Orlando, and A. J. Soja, 2011: The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev., 4, 625-641. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66978 | - |
dc.description.abstract | Chen (1999) 提出「再凝結核化機制 (Recondensation-induced nucleation mechanism)」假說,用來解釋都市地區的氣膠在數量濃度和質量濃度的日夜變化上呈現出趨勢不一致、時間不同步的現象,此現象無法單純的透過由光化學反應或內燃引擎燃燒所導致的核化過程來闡明。再凝結核化機制的主要概念是,內燃引擎中發生的燃燒過程本身不僅是形成新氣膠的來源,還會將原本空氣中既有的氣膠轉換為粒徑較小、數量較多的狀態並重新回到環境中。整體氣膠質量在這個過程中維持守恆,數量則大幅增加。首先,本研究藉由建立簡單的理想模型,只考慮再凝結核化機制的作用,以初步了解其對整體氣膠性質的影響和重要性。隨後,本研究將再凝結核化機制以詳盡參數法的形式植入Community Multi-Scale Air Quality (CMAQ) 模式的氣膠模組中,以模式模擬的方法分析此機制會如何改變氣膠的各種物理性質,以及評估其對區域空氣品質的可能衝擊。為了滿足模式模擬的需求,本研究亦發展出一套完整的系統性方法,可以對多組不同的排放資料進行客觀分析,最後產生CMAQ模式所需要的排放場。
理想模型的結果指出,數量濃度和表面積濃度這兩項氣膠物理性質對再凝結核化機制的作用非常敏感,但是體積濃度則因為質量守恆而沒有反應。在CMAQ模式模擬方面,結果顯示位於再凝結核化機制活躍的地區,例如都市和大型公路沿線等,氣膠的數量濃度增加可達400%、表面積濃度增加可達20%、至於體積濃度則增加大約2%。體積濃度的增加雖然微弱但是明確,此發現似乎與再凝結核化機制遵守質量守恆的結果相抵觸,但其實是因為氣膠動力過程的複雜回饋所造成。另外,這些由再凝結核化機制所引發的氣膠物理性質改變可能會產生健康風險、能見度下降等負面影響,如何對內燃引擎制定有效的氣膠排放規範將是未來重要的環境議題。 | zh_TW |
dc.description.abstract | This study intends to verify the hypothesized recondensation-induced nucleation (RIN) mechanism, which was proposed by Chen (1999) to explain several observed inconsistencies between the diurnal variations in the aerosol number and mass concentrations over urban areas. Essentially, the core concept of the RIN mechanism is that the combustion process of an internal combustion engine not only acts as a source of aerosol particles but also converts pre-existing aerosol particles into smaller and more numerous ones while obeying total aerosol mass conservation. This study investigates the RIN mechanism through constructing a simple box model as well as implementing a comprehensive parameterization scheme into the aerosol module of the Community Multi-Scale Air Quality (CMAQ) model for simulations. In the process, a systematic method is developed as a byproduct to prepare the model-ready emission fields from several data sources.
The box model results reveal that the aerosol number and surface area are the key aerosol physical properties particularly sensitive to the effects of the RIN mechanism but the aerosol volume is not. To analyze further into the details, a summer case on 2015 July 15th over Taiwan is selected for CMAQ model simulations. The results show that at places where the RIN mechanism is the most active such as major cities and highways, the overall aerosol number concentration can increase up to 400% while the overall aerosol surface area concentration can increase up to 20%. The overall aerosol mass concentration shows weak but clear increases up to 2%, a result seemingly contradictory to the mass conservation principle but in fact due to the feedback from complex aerosol dynamics. The model simulations demonstrate that the changes induced by the RIN mechanism in the aerosol physical properties may lead to potential health risks and visibility degradation. Future particle emission standards for internal combustion engines may need to be re-evaluated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:16:13Z (GMT). No. of bitstreams: 1 ntu-106-R03229007-1.pdf: 45140578 bytes, checksum: b4fef7ec3f7e9390be999074d68cb86b (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 1. Introduction 1
2. Data and Methods 8 2.1. Overview 8 2.2. Anthropogenic Emission Fields 9 2.2.1. Objective Analysis of the TEDS Data 9 2.2.2. Domain-Windowed Computation of Emission Coefficients 10 2.2.3. Area-Conserved Re-gridding and Further Processing Steps 14 2.3. Biogenic Emission Fields 15 2.4. Box Model for Evaluating the RIN Mechanism 15 2.5. Parameterization of the RIN Mechanism 17 3. Results 24 3.1. Box Model Results 24 3.2. CMAQ Model Results 25 3.2.1. Number Concentration 25 3.2.2. Surface Area Concentration 28 3.2.3. Mass Concentration 30 3.2.4. Diurnal Variations 32 4. Discussions and Summary 35 5. References 39 Figures 48 Tables 83 Appendices 85 | |
dc.language.iso | en | |
dc.title | 引擎廢氣中氣膠再凝結核化機制之模式模擬 | zh_TW |
dc.title | Modeling the Effects of Recondensation-Induced Aerosol Nucleation in Engine Exhaust | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周崇光(Chung-Kuang Chou),蔡宜君(I-Chun Tsai) | |
dc.subject.keyword | CMAQ 模式,氣膠物理性質,詳盡參數法,排放場,內燃引擎,再凝結核化機制, | zh_TW |
dc.subject.keyword | CMAQ model,aerosol physical properties,comprehensive parameterization scheme,emission field,internal combustion engine,recondensation-induced nucleation mechanism, | en |
dc.relation.page | 98 | |
dc.identifier.doi | 10.6342/NTU201703142 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-14 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 44.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。