請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 華國泰(Kuo-Tai Hua) | |
| dc.contributor.author | Yu-Cheng Liu | en |
| dc.contributor.author | 劉育誠 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:15:53Z | - |
| dc.date.available | 2027-08-14 | |
| dc.date.copyright | 2017-09-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-14 | |
| dc.identifier.citation | Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F., 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5), 359-386.
Kim TJ, Kim HY, Lee KW, Kim MS., 2009. Multimodality assessment of esophageal cancer: preoperative staging and monitoring of response to therapy. Radiographics 29, 403–421. Napier KJ, Scheerer M, Misra S., 2014. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol 6(5),112–120. Kalvik TV, Arnesen T., 2013. Protein N-terminal acetyltransferases in cancer. Oncogene 32, 269–276. Shemorry A, Hwang CS, Varshavsky A., 2013. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540–551. Van Damme P, Evjenth R, Foyn H, Demeyer K, De Bock PJ, Lillehaug JR, Vandekerckhove J, Arnesen T, Gevaert K., 2011. Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of Nα-acetyltransferases and point to hNaa10p as the post-translational actin Nα-acetyltransferase. Mol. Cell. Proteomics 10, M110.004580. Foyn H, Van Damme P, Støve SI, Glomnes N, Evjenth R, Gevaert K, Arnesen T., 2013. Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo. Mol. Cell. Proteomics 12, 42–54. Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW., 2002. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111, 709–720. Lim JH, Chun YS, Park JW., 2008. Hypoxia-inducible factor-1alpha obstructs a Wnt signaling pathway by inhibiting the hARD1-mediated activation of beta-catenin Cancer Res. 68, 5177–5184 Seo JH, Park JH, Lee EJ, Vo TT, Choi H, Jang JK, Wee HJ, Ahn BJ, Cha JH, Shin MW, Kim KW., 2014. Autoacetylation regulates differentially the roles of ARD1 variants in tumorigenesis. Int. J. Oncol 46(1), 99-106 Tribioli C, Mancini M, Plassart E, Bione S, Rivella S, Sala C, Torri G, Toniolo D., 1994. Isolation of new genes in distal Xq28: transcriptional map and identification of a human homologue of the ARD1 N-acetyl transferase of Saccharomyces cerevisiae. Hum. Mol. Genet. 3, 1061–1067. Yoon H, Kim HL, Chun YS, Shin DH, Lee KH, Shin CS, Lee DY, Kim HH, Lee ZH, Ryoo HM, Lee MN, Oh GT, Park JW., 2014. NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2. Nat. Commun. 5, 5176 Shin SH, Yoon H, Chun YS, Shin HW, Lee MN, Oh GT, Park JW., 2014. Arrest defective 1 regulates the oxidative stress response in human cells and mice by acetylating methionine sulfoxide reductase A. Cell Death Dis. 5, 1490 Shin DH, Chun YS, Lee KH, Shin HW, Park JW., 2009. Arrest defective-1 controls tumor cell behavior by acetylating myosin light chain kinase. PLoS One 4, e7451 Wang Z, Wang Z, Guo J, Li Y, Bavarva JH, Qian C, Brahimi-Horn MC, Tan D, Liu W., 2012. Inactivation of androgen-induced regulator ARD1 inhibits androgen receptor acetylation and prostate tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 109, 3053–3058 Lee MN, Lee SN, Kim SH, Kim B, Jung BK, Seo JH, Park JH, Choi JH, Yim SH, Lee MR, Park JG, Yoo JY, Kim JH, Lee ST, Kim HM, Ryeom S, Kim KW, Oh GT., 2010. Roles of arrest-defective protein 1(225) and hypoxia-inducible factor 1alpha in tumor growth and metastasis. J Natl Cancer Inst. 102(6), 426-442. Lee CF, Ou DS, Lee SB, Chang LH, Lin RK, Li YS, Upadhyay AK, Cheng X, Wang YC, Hsu HS, Hsiao M, Wu CW, Juan LJ., 2010.hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing. J. Clin. Invest. 120, 2920–2930. Hua KT, Tan CT, Johansson G, Lee JM, Yang PW, Lu HY, Chen CK, Su JL, Chen PB, Wu YL, Chi CC, Kao HJ, Shih HJ, Chen MW, Chien MH, Chen PS, Lee WJ, Cheng TY, Rosenberger G, Chai CY, Yang CJ, Huang MS, Lai TC, Chou TY, Hsiao M, Kuo ML., 2011. N-α-acetyltransferase 10 protein suppresses cancer cell metastasis by binding PIX proteins and inhibiting Cdc42/Rac1 activity. Cancer Cell 19, 218–231. Gromyko D, Arnesen T, Ryningen A, Varhaug JE, Lillehaug JR., 2010. Depletion of the human N-α-terminal acetyltransferase A induces p53-dependent apoptosis and p53-independent growth inhibition. Int. J. Cancer 127, 2777–2789. Dasgupta S, Srinidhi S, Vishwanatha JK., 2012. Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges. J Carcinog 11, 4. Baker AH, Edwards DR, Murphy G., 2002. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 115, 3719-3727. Zheng Q, Tang ZY, Xue Q, Shi DR, Song HY, Tang HB., 2000. Invasion and metastasis of hepatocellular carcinoma in relation to urokinase-type plasminogen activator, its receptor and inhibitor. J Cancer Res Clin Oncol. 126(11), 641-646. Pulukuri SM, Gorantla B, Knost JA, Rao JS. Frequent loss of cystatin E/M expression implicated in the progression of prostate cancer., 2006. Oncogene 28(31), 2829-2838. Briggs JJ, Haugen MH, Johansen HT, Riker AI, Abrahamson M, Fodstad Ø, Maelandsmo GM, Solberg R., 2010. Cystatin E/M suppresses legumain activity and invasion of human melanoma. BMC Cancer 10, 17. Yang H, Li Q, Niu J, Li B, Jiang D, Wan Z, Yang Q, Jiang F, Wei P, Bai S., 2016. microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10. Oncotarget 7(3), 2709-2720. Yang PW, Huang YC, Hsieh CY, Hua KT, Huang YT, Chiang TH, Chen JS, Huang PM, Hsu HH, Kuo SW, Kuo ML, Lee JM., 2014. Association of miRNA-related genetic polymorphisms and prognosis in patients with esophageal squamous cell carcinoma. Ann Surg Oncol. 21, S601-609. Kuo HP, Lee DF, Chen CT, Liu M, Chou CK, Lee HJ et al., 2010. ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Sci Signal 3, ra9. Yi CH, Pan H, Seebacher J, Jang IH, Hyberts SG, Heffron GJ et al.,2011. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 146, 607 - 620. Castro-Castro A, Janke C, Montagnac G, Paul-Gilloteaux P, Chavrier P., 2012. ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion. Eur J Cell Biol. 91(11-12), 950-960. Liu Z, Li N, Diaz LA, Shipley M, Senior RM, Werb Z., 2005. Synergy between a plasminogen cascade and MMP-9 in autoimmune disease. J Clin Invest. 115(4), 879-887. Jing Y, Kovacs K, Kurisetty V, Jiang Z, Tsinoremas N, Merchan JR., 2012. Role of plasminogen activator inhibitor-1 in urokinase's paradoxical in vivo tumor suppressing or promoting effects. Mol Cancer Res. 10(10),1271-1281. Malinowsky K, Wolff C, Berg D, Schuster T, Walch A, Bronger H, Mannsperger H, Schmidt C, Korf U, Höfler H, Becker KF., 2012. uPA and PAI-1-Related Signaling Pathways Differ between Primary Breast Cancers and Lymph Node Metastases. Transl Oncol. 5(2), 98-104. Ai LB, Kim WJ, Kim TY, Fields CR, Massoll NA, Robertson KD, Brown KD., 2006. Epigenetic silencing of the tumor suppressor cystatin M occurs during breast cancer progression. Cancer Res. 66(16): 7899-7909. Li SQ, Li F, Xiao Y, Wang CM, Tuo L, Hu J, Yang XB, Wang JS, Shi WH, Li X, Cao XF., 2014. Comparison of long non‑coding RNAs, microRNAs and messenger RNAs involved in initiation and progression of esophageal squamous cell carcinoma. Mol Med Rep. 10(2), 652-662. Zhao BS, Liu SG, Wang TY, Ji YH, Qi B, Tao YP, Li HC, Wu XN., 2013. Screening of microRNA in patients with esophageal cancer at same tumor node metastasis stage with different prognoses. Asian Pac J Cancer Prev. 14(1), 139-143. Seo JH, Cha JH, Park JH, Jeong CH, Park ZY, Lee HS, Oh SH, Kang JH, Suh SW, Kim KH, Ha JY, Han SH, Kim SH, Lee JW, Park JA, Jeong JW, Lee KJ, Oh GT, Lee MN, Kwon SW, Lee SK, Chun KH, Lee SJ, Kim KW., 2010. Arrest defective 1 autoacetylation is a critical step in its ability to stimulate cancer cell proliferation. Cancer Res. 70, 4422–4432. Kulis M, Esteller M., 2010. DNA methylation and cancer. Adv Genet. 70, 27-56. Baylin SB., 2005. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol. 2(1), S4-11. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66963 | - |
| dc.description.abstract | 目前食道癌治療方式主要是手術切除、放射線及化療,但病人預後不佳且復發機率高。而食道癌尚無有效的標靶藥物。一旦癌細胞遠端轉移,病人的五年存活率僅5%,故尋找能夠調控食道癌進程的專一性分子對於發展標靶治療藥物相當重要。蛋白質N端乙醯基轉移酶(Protein N-terminal Acetyltransferases, NATs)會針對蛋白質進行乙醯化,藉此調控蛋白質功能,其中N-α-acetyltransferase 10 protein (Naa10p)為NatA乙醯基轉移酶複合體中具有催化活性的次單元。在過去的文獻中曾報導Naa10p在不同癌症中,可能透過不同的機制扮演致癌基因或抑癌基因,本研究中我們試圖探討Naa10p在食道癌中的角色,評估其做為新穎食道癌藥物標靶的可能性。首先經由分析The Cancer Genome Atlas 資料庫,我們發現在食道癌病人中Naa10p表現量高的病人存活率較差,可做為預後指標分子。在細胞實驗中進一步抑制Naa10p在食道癌細胞株中的Naa10p表現量,觀察到細胞migration能力不變,但invasion能力及分解Gelatin的能力下降,推測Naa10p可能會對蛋白酶(protease)的表現及活性或胞外分泌量進行調控。而Protease inhibitor array的結果指出在抑制Naa10p表現後,Cystatin E/M, Serpin E1, Lipocalin-1的胞外分泌量增加。故推測Naa10p可能會對這些Protease inhibitor的胞外分泌量進行調控。而我們也同時對Naa10p在食道癌中被過度表現的原因進行探討,針對NAA10的轉錄層級去進行資料庫分析,目前已知NAA10基因啟動子(promoter)序列甲基化程度與NAA10 RNA表現量呈負相關,並發現miR-361可能調控Naa10p的表現。綜合以上,DNA的甲基化與miR-361可能對Naa10p在食道癌中的表現調控,而Naa10p 可能透過調控protease inhibitors的分泌進一步影響食道癌轉移。 | zh_TW |
| dc.description.abstract | The main treatment options for esophageal cancer patients are usually surgery, radiation therapy, and chemotherapy. There is no effective target therapy for esophageal cancer patients with poor prognosis and high recurrence. Once the cancer cell metastasis, the 5-year survival rate of esophageal cancer patients only 5%. It is urgent to find out a molecule that is specific to esophageal cancer progression as a therapeutic target. N-α-acetyltransferase 10 protein (Naa10p) is a catalytic subunit of NatA and acetylates the N-terminal amino group of protein to regulate protein function. In previous studies, Naa10p plays multiple roles in regulating cancer progression. Here, we investigate the role of Naa10p in esophageal cancer to assess its potential to be a novel therapeutic target. We analyzed The Cancer Genome Atlas (TCGA) and discovered that patients with the high expression of Naa10p had poor prognosis. We then assumed that Naa10p as an oncogene in esophageal cancer. We knocked down Naa10p expression in Esophagus Squamous Cell Carcinoma (ESCC) cell lines, there was no significant altered in cell migration ability, but cell invasion ability and cell gelatinolytic activity were down regulated. Data of Protease inhibitor array indicated that secretion of Cystatin E/M, Serpin E1, and Lipocalin-1 were up regulated after Naa10p knocked down. We suggested that Naa10p would regulate the secretion of these protease inhibitor. Otherwise, we also inspected the dysregulation of Naa10p in esophageal cancer. We discovered that DNA methylation level at NAA10 promoter had negative correlation with patients’ survival and miR-361 probably could repress NAA10 expression. As mention above, the DNA methylation of NAA10 promoter and miR-361 might regulate the expression of Naa10p in esophageal cancer. Naa10p would affect esophageal cancer metastasis by regulating the secretion of protease inhibitors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:15:53Z (GMT). No. of bitstreams: 1 ntu-106-R04447008-1.pdf: 5315227 bytes, checksum: d3a8b1ee9ae28b0bb035b0fa314d69ad (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
致謝-------------------------------------------------------------------------------------------------a Abbreviation--------------------------------------------------------------------------------------b 中文摘要-------------------------------------------------------------------------------------------I Abstrate--------------------------------------------------------------------------------------------II Contents-------------------------------------------------------------------------------------------IV Chapter1. Introdution--------------------------------------------------------------------------1 1.1 Esophageal cancer----------------------------------------------------------------------------2 1.2 N-α-acetyltransferase 10 protein-----------------------------------------------------------3 1.3 Research Motivation-------------------------------------------------------------------------7 Chapter2. Materials and methods------------------------------------------------------------8 Chapter3. Results--------------------------------------------------------------------------------20 3.1 NAA10 expression inversely correlated to the prognosis of Esophageal Cancer patients---------------------------------------------------------------------------------------------21 3.2 Naa10p did not affect ESCC cells proliferation------------------------------------------21 3.3 Naa10p regulated ESCC cells invasion but not migration ability----------------------22 3.4 Genolytic activity was affected by Naa10p but MMP2 and MMP9 did not be regulated--------------------------------------------------------------------------------------------23 3.5 SerpinE1, Cystatin E/M, and Lipocalin-1 were probably regulated by Naa10p-----24 3.6 The dysregulation of NAA10 in Esophageal cancer-------------------------------------25 Chapter4. Discussions--------------------------------------------------------------------------27 Figures and Figure legends--------------------------------------------------------------------33 References-----------------------------------------------------------------------------------------59 | |
| dc.language.iso | en | |
| dc.subject | N端乙醯基轉移? | zh_TW |
| dc.subject | DNA甲基化 | zh_TW |
| dc.subject | 細胞侵襲 | zh_TW |
| dc.subject | 蛋白?抑制分子 | zh_TW |
| dc.subject | 食道癌 | zh_TW |
| dc.subject | Esophageal cancer | en |
| dc.subject | N-terminal acetyltransferases | en |
| dc.subject | Cell invasiveness | en |
| dc.subject | Protease inhibitors | en |
| dc.subject | DNA methylation | en |
| dc.title | 探討蛋白質N端乙醯基轉移酶在食道癌中的表現調控及其在食道癌細胞侵襲能力所扮演的角色 | zh_TW |
| dc.title | The Dysregulation of N-α-acetyltransferase 10 protein Expression and its Roles in Cell Invasiveness of Esophageal Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡銘賢(Ming-Hsien Chien),李維駿(Wei-Jiunn Lee),翁孟仕(Meng-Shih Weng) | |
| dc.subject.keyword | 食道癌,N端乙醯基轉移?,細胞侵襲,蛋白?抑制分子,DNA甲基化, | zh_TW |
| dc.subject.keyword | Esophageal cancer,N-terminal acetyltransferases,Cell invasiveness,Protease inhibitors,DNA methylation, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU201702955 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
