Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66926
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州
dc.contributor.authorYu-Yang Changen
dc.contributor.author張宇揚zh_TW
dc.date.accessioned2021-06-17T01:14:59Z-
dc.date.available2019-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citation[1] Jin'ichi Yamaguchi, Atsuo Takanishi, and Ichiro Kato, 'Development of a Dynamic Biped Walking System for Humanoid - Development of a Biped Walking Robot Adapting to the Humans' Living Floor -,' in Proceedings of the 1996 IEEE International Conference on Robotics and Automation, 1996.
[2] H. Adachi, T. Arai, A. Shimizu and Y, Nogami, 'Mechanism and Control of a Leg-Wheel Hybrid Mobile Robot,' in Proceedings of the 1999 IEEVRSJ International Conference on Intelligent Robots and Systems, 1999.
[3] Hiroshi Takemura, Masato Deguchi, Jun Ueda, Yoshio Matsumoto, and Tsukasa Ogasawara, 'Slip-adaptive walk of quadruped robot,' Robotics and Autonomous Systems, vol. 53, no. 2, pp. 124-141, 2005.
[4] Shen-Chiang Chen, Ke-Jung Huang, Wei-Hsi Chen, Shuan-Yu Shen, Cheng-Hsin Li, and Pei-Chun Lin, 'Quattroped: A Leg--Wheel Transformable Robot,' IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 730-742, 2014.
[5] Ya-Cheng Chou, Ke-Jung Huang, Wei-Shun Yu, and Pei-Chun Lin, 'Model-Based Development of Leaping in a Hexapod Robot,' IEEE Transactions on Robotics, vol. 31, no. 1, pp. 40-54, 2015.
[6] Yun-Su Ha and Shin'ichi Yuta, 'Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot,' Robotics and Autonomous Systems, vol. 17, pp. 65-80, 1996.
[7] Bryan J. Thibodeau, Patrick Deegan, and Roderic Grupen, 'Static analysis of contact forces with a mobile manipulator,' presented at the IEEE International Conference on Robotics and Automation, 2006.
[8] Patrick Deegan, Bryan J. Thibodeau, and Roderic Grupen, 'Designing a self-stabilizing robot for dynamic mobile manipulation,' Massachusetts Univ Amherst DEPT of Computer Science, 2006.
[9] Felix Grasser, Aldo d'Arrigo, Silvio Colombi, and Alfred C. Rufer, 'JOE: A Mobile, Inverted Pendulum,' IEEE Transactions on Industrial Electrononics, vol. 49, pp. 107-114, 2002.
[10] John B. Morrell, 'Design of a closed loop controller for a two wheeled balancing transporter,' in Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007.
[11] http://www.segway.com/.
[12] Marc H. Raibert, 'Hopping in Legged Systems-Modeling and Simulation for the Two-Dimensional One-Legged Case,' IEEE Trasactions on Systems, Man, and Cybernetics, 1984.
[13] Marc H. Raibert, H. Benjamin Brown, Jr. Michael Chepponis, 'Experiments in Balance with a 3D One-Legged Hopping Machine,' The international Journal of Robotics Research, vol. 3, 1984.
[14] Robert R. Playter and M. H. Raibert, 'Control of a Biped Somersault in 3D,' in Proceedings of the 1992 IEEE International Conference on Intelligent Robots and Systems, 1992.
[15] Marc H. Raibert, Robert Ringrose, Dace Bailey, and Karl Leeser, Dynamic Legged Locomotion in Robots and Animals. 1995.
[16] Woojin Lee, Marc H. Raibert, 'Control of Hoof Rolling in an Articulated Leg,' in Proceedings of the 1991 IEEE Intemational Conference on Robotics and Automation, 1991.
[17] Garth J. Zeglin, 'Uniroo--a one legged dynamic hopping robot,' 1991.
[18] Ryuma Niiyama, Akihiko Nagakubo and Yasuo Kuniyoshi, 'Mowgli: A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System,' presented at the IEEE International Conference on Robotics and Automation, 2007.
[19] Umberto Scarfogliero, Cesare Stefanini, and Paolo Dario, 'A bioinspired concept for high efficiency locomotion in micro robots The jumping robot grillo,' in Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006.
[20] Umberto Scarfogliero, Cesare Stefanini and Paolo Dario, 'Design and development of the long-jumping ”grillo” mini robot,' in 2007 IEEE International Conference on WeB3.5 Robotics and Automation, 2007.
[21] F. Li, Weiting Liu, Xin Fu, Gabriella Bonsignori, Umberto Scarfogliero, Cesare Stefanini, and Paolo Dario 'Jumping like an insect: Design and dynamic optimization of a jumping mini robot based on bio-mimetic inspiration,' Mechatronics, vol. 22, no. 2, pp. 167-176, 2012.
[22] Rhodri Armour, Keith Paskins, Adrian Bowyer, Julian Vincent and William Megill, 'Jumping robots: a biomimetic solution to locomotion across rough terrain,' Bioinspir Biomim, vol. 2, no. 3, pp. S65-82, Sep 2007.
[22] Mirko Kovaˇc, Martin Fuchs, Andr´e Guignard, Jean-Christophe Zufferey, Dario Floreano, 'A miniature 7g jumping robot,' presented at the IEEE International Conference on Robotics and Automation, 2008.
[23] Guangming Song, Kaijian Yin, Yaoxin Zhou and Xiuzhen Cheng, 'A Surveillance Robot with Hopping Capabilities for Home Security,' IEEE Transactions on Consumer Electronics, vol. 55, no. 4, 2009.
[24] https://www.bostondynamics.com/handle.
[25] Fu-Wei Li, ' Development of a self-balancing two-wheeled jumping robot '.
[26] Jianguo Zhao, Jing Xu, Bingtuan Gao, Ning Xi, Fernando J. Cintron, Matt W. Mutka, and Li Xiao, 'MSU Jumper: A Single-Motor-Actuated Miniature Steerable Jumping Robot,' IEEE Transactions on Robotics, vol. 29, no. 3, pp. 602-614, 2013.
[27] Henrik Rehbinder and Xiaoming Hu, 'Nonlinear Pitch and Roll Estimation for Walking Robots ' in Proceedings of the 2000 IEEE lntemational Conference on Robotics & Automation 2000.
[28] R. Mahony, Tarek Hamel and Jean-Michel Pflimlin, 'Nonlinear Complementary Filters on the Special Orthogonal Group,' IEEE Trasactions on Automations Control, vol. 53, no. 5, 2008.
[29] David Jurman, Marko Jankovec, Roman Kamnik, and Marko Topič, 'Calibration and data fusion solution for the miniature attitude and heading reference system,' Sensors and Actuators A: Physical, vol. 138, no. 2, pp. 411-420, 2007.
[30] Hau-Shiue Juang and Kai-Yew Lum, 'Design and Control of a Two-Wheel Self-Balancing Robot using the Arduino Microcontroller Board,' presented at the IEEE International Conference on Control and Automation, 2013.
[31] S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, 'Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding,' Materials Science and Engineering A325, pp. 228-235, 2002.
[32] http://tw.misumi-ec.com/.
[33] https://www.arduino.cc/.
[34] http://www.shayangye.com/.
[35] https://www.pololu.com/.
[36] http://www.st.com/.
[37] https://www.invensense.com/.
[38] Paul Horowitz and Winfield Hill, The Art of Electronics, 3rd ed. 1989.
[39] Rich Chi Ooi, 'Balancing a Two-Wheeled Autonomous Robot,' 2003.
[40] Wei An and Yangmin Li, 'Simulation and Control of a Two-wheeled Self-balancing Robot,' in Proceeding of the IEEE International Conference on Robotics and Biomimetics, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66926-
dc.description.abstract本論文提出了一個可跳躍的雙輪平衡移動機器人,此機器人具有體積小、零迴轉半徑等優勢。在此雙輪機器人的結構上加入跳躍功能,可使其克服各地形障礙,大幅增加機動性。
本研究所提出之機器人分成兩部分,包含達成跳躍功能之機構以及移動平衡系統。機器人之跳躍機構主要包含圓柱形凸輪、彈簧以及插銷。藉由驅動馬達帶動凸輪轉動,彈簧將會被壓縮並儲存其彈性位能。彈簧釋放後,彈性位能將轉換為動能,致使整體機器人瞬間向上跳躍。移動平衡系統由感測器及直流馬達組成,控制器將藉感測器偵測系統的傾斜姿態,並以LQR控制方法計算馬達所需的輸出以保持系統平衡。改變系統目標角度可使機器人以移動的方式保持平衡,以此實現移動功能。
本論文針對跳躍及雙輪自平衡等理論進行討論,以此設計可達成雙輪平衡及跳躍功能之機構。此外亦推導了系統模型,以此作為控制器的設計依據。本研究量測了此機器人的平衡、移動、以及跳躍的性能,並對結果進行討論。結果顯示,本機器人具有良好的平衡移動表現,並可順利地越過障礙物。
zh_TW
dc.description.abstractThis thesis presents the development and characterization of a two-wheeled self-balancing jumping robot, which features advantages such as small footprint and zero turning radius. The two-wheeled self-balancing robot, which is integrated with a jumping mechanism, is capable of leaping over obstacles and exhibits excellent maneuverability.
The proposed robot consists of two mechanical structures: the jumping mechanism and the balancing-translation system. The jumping mechanism mainly consists of a cylindrical cam, a spring, and a latch. As a DC motor drives the cam, the spring is compressed and stores elastic energy. As the spring is released, the stored elastic energy is converted into kinetic energy which makes the robot jump upward impulsively. The balancing-translation system consists of an inertial measurement unit (IMU) and two DC motors with encoders. To keep the robot balanced, the controller estimates the output of the motors with LQR method by applying the attitude data measured by the sensors. Translational motions of the robot are achieved by changing the target angle which makes the robot move to keep balanced.
In order to design a proper mechanism which can accomplish the capabilities of self-balancing and jumping, analytical models of jumping mechanism and self-balancing control are derived. In addition, the dynamic system is also modeled for the controller design. In this thesis, the performance of self-balancing motions, translational motions, and jumping features are measured and discussed. The proposed self-balancing jumping robot possesses the abilities to overcome obstacles and travel through rough terrains.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:14:59Z (GMT). No. of bitstreams: 1
ntu-106-R04522726-1.pdf: 4689320 bytes, checksum: fa2e547f442a4100436e6fb5174716ac (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 VI
符號表 X
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 移動式機器人 2
1.2.2 跳躍式機器人 6
1.2.3 可跳躍之移動機器人 13
1.3 研究動機與目的 15
1.4 論文架構 16
第二章 理論與設計 17
2.1 前言 17
2.2 跳躍能量理論 18
2.3 傾斜姿態角度估算 20
2.3.1 尤拉角法 (Euler angle) 23
2.3.2 四元數法 (Quaternion) 26
2.4 凸輪彈簧機構 28
2.5 整體設計 35
2.5.1 整體架構 35
2.5.2 移動平衡機構 38
2.5.3 彈跳機構 40
第三章 驅動控制及感測系統 43
3.1 前言 43
3.2 核心處理器 44
3.3 馬達 46
3.4 驅動控制 50
3.5 感測器 52
第四章 控制器設計 56
4.1 系統模型 56
4.2 LQR控制方法 62
4.3 移動控制 66
4.4 彈跳控制 68
4.5 移動跳躍控制 71
第五章 實驗量測與討論 72
5.1 平衡移動實驗 72
5.1.1 原地平衡 73
5.1.2 外部擾動 75
5.1.3 移動控制 77
5.2 垂直跳躍實驗 79
5.2.1 跳躍高度量測 79
5.2.2 空中姿態控制 82
5.3 移動跳躍實驗 85
5.3.1 移動跳躍控制量測 85
5.3.2 移動跳躍 86
第六章 結論與未來展望 89
6.1 結論 89
6.2 未來展望 90
參考文獻 91
dc.language.isozh-TW
dc.subject雙輪機器人zh_TW
dc.subject自平衡zh_TW
dc.subject凸輪zh_TW
dc.subject跳躍機器人zh_TW
dc.subjectjumping roboten
dc.subjectcamen
dc.subjectself-balancingen
dc.subjecttwo-wheeled roboten
dc.title自平衡雙輪跳躍機器人之開發zh_TW
dc.titleDevelopment of a two-wheeled self-balancing jumping roboten
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇裕軒,陳國聲
dc.subject.keyword跳躍機器人,凸輪,自平衡,雙輪機器人,zh_TW
dc.subject.keywordjumping robot,cam,self-balancing,two-wheeled robot,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201703246
dc.rights.note有償授權
dc.date.accepted2017-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved