Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/668
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張以承(Yi-Cheng Chang) | |
dc.contributor.author | Cai-Cing Liu | en |
dc.contributor.author | 劉采晴 | zh_TW |
dc.date.accessioned | 2021-05-11T04:54:33Z | - |
dc.date.available | 2019-08-26 | |
dc.date.available | 2021-05-11T04:54:33Z | - |
dc.date.copyright | 2019-08-26 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | 1. Yin, S.J., Alcohol dehydrogenase: enzymology and metabolism. Alcohol Alcohol Suppl, 1994. 2: p. 113-9.
2. Eriksson, C.J., M. Marselos, and T. Koivula, Role of cytosolic rat liver aldehyde dehydrogenase in the oxidation of acetaldehyde during ethanol metabolism in vivo. Biochem J, 1975. 152(3): p. 709-12. 3. Klyosov, A.A., et al., Possible role of liver cytosolic and mitochondrial aldehyde dehydrogenases in acetaldehyde metabolism. Biochemistry, 1996. 35(14): p. 4445-56. 4. Yoval-Sanchez, B. and J.S. Rodriguez-Zavala, Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol, 2012. 25(3): p. 722-9. 5. Chen, C.H., et al., Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev, 2014. 94(1): p. 1-34. 6. Enomoto, N., et al., Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res, 1991. 15(1): p. 141-4. 7. Edenberg, H.J., The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health, 2007. 30(1): p. 5-13. 8. Larson, H.N., H. Weiner, and T.D. Hurley, Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase 'Asian' variant. The Journal of biological chemistry, 2005. 280(34): p. 30550-30556. 9. Perez-Miller, S., et al., Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nature Structural &Amp; Molecular Biology, 2010. 17: p. 159. 10. Eriksson, C.J., The role of acetaldehyde in the actions of alcohol (update 2000). Alcohol Clin Exp Res, 2001. 25(5 Suppl ISBRA): p. 15S-32S. 11. Brooks, P.J., et al., The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med, 2009. 6(3): p. e50. 12. Li, H., et al., Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet, 2009. 73(Pt 3): p. 335-45. 13. Vasiliou, V., A. Pappa, and T. Estey, Role of Human Aldehyde Dehydrogenases in Endobiotic and Xenobiotic Metabolism. Drug Metabolism Reviews, 2004. 36(2): p. 279-299. 14. Salaspuro, M., Acetaldehyde as a common denominator and cumulative carcinogen in digestive tract cancers. Scandinavian Journal of Gastroenterology, 2009. 44(8): p. 912-925. 15. O'Brien, P.J., A.G. Siraki, and N. Shangari, Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol, 2005. 35(7): p. 609-62. 16. LoPachin, R.M. and T. Gavin, Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chemical research in toxicology, 2014. 27(7): p. 1081-1091. 17. Nelson, M.-A.M., S.P. Baba, and E.J. Anderson, Biogenic Aldehydes as Therapeutic Targets for Cardiovascular Disease. Current opinion in pharmacology, 2017. 33: p. 56-63. 18. Esterbauer, H., R.J. Schaur, and H. Zollner, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 1991. 11(1): p. 81-128. 19. Zarkovic, K., 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med, 2003. 24(4-5): p. 293-303. 20. Zarkovic, N., 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Aspects Med, 2003. 24(4-5): p. 281-91. 21. Frohnert, B.I. and D.A. Bernlohr, Protein carbonylation, mitochondrial dysfunction, and insulin resistance. Adv Nutr, 2013. 4(2): p. 157-63. 22. Marnett, L.J., J.N. Riggins, and J.D. West, Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest, 2003. 111(5): p. 583-93. 23. Calingasan, N.Y., K. Uchida, and G.E. Gibson, Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer's disease. J Neurochem, 1999. 72(2): p. 751-6. 24. LoPachin, R.M., D.S. Barber, and T. Gavin, Molecular mechanisms of the conjugated alpha,beta-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol Sci, 2008. 104(2): p. 235-49. 25. Choi, K. and Y.B. Kim, Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med, 2010. 25(2): p. 119-29. 26. Furukawa, S., et al., Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation, 2004. 114(12): p. 1752-1761. 27. Li, C., et al., Aldehyde Dehydrogenase-2 Attenuates Myocardial Remodeling and Contractile Dysfunction Induced by a High-Fat Diet. Cellular Physiology and Biochemistry, 2018. 48(5): p. 1843-1853. 28. Pillon, N.J. and C.O. Soulage, Lipid peroxidation by-products and the metabolic syndrome, in Lipid Peroxidation. 2012, IntechOpen. 29. Uchida, K., et al., Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem, 1999. 274(4): p. 2234-42. 30. Pillon, N.J., et al., The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress. Endocrinology, 2012. 153(5): p. 2099-111. 31. Schauenstein, E., Autoxidation of polyunsaturated esters in water: chemical structure and biological activity of the products. J Lipid Res, 1967. 8(5): p. 417-28. 32. Singh, S.P., et al., Role of the electrophilic lipid peroxidation product 4-hydroxynonenal in the development and maintenance of obesity in mice. Biochemistry, 2008. 47(12): p. 3900-11. 33. Frohnert, B.I., et al., Increased adipose protein carbonylation in human obesity. 2011. 19(9): p. 1735-1741. 34. Miwa, I., et al., Inhibition of glucose-induced insulin secretion by 4-hydroxy-2-nonenal and other lipid peroxidation products. Endocrinology, 2000. 141(8): p. 2767-72. 35. Ihara, Y., et al., Pancreatic (B-Cells of GK Rats, a Model of Type 2 Diabetes. 1999. 48. 36. Shearn, C.T., et al., Modification of Akt2 by 4-hydroxynonenal inhibits insulin-dependent Akt signaling in HepG2 cells. Biochemistry, 2011. 50(19): p. 3984-96. 37. Demozay, D., et al., FALDH Reverses the Deleterious Action of Oxidative Stress Induced by Lipid Peroxidation Product 4-Hydroxynonenal on Insulin Signaling in 3T3-L1 Adipocytes. 2008. 57(5): p. 1216-1226. 38. Hill, J.O., H.R. Wyatt, and J.C. Peters, Energy balance and obesity. Circulation, 2012. 126(1): p. 126-132. 39. Galgani, J. and E. Ravussin, Energy metabolism, fuel selection and body weight regulation. International journal of obesity (2005), 2008. 32 Suppl 7(Suppl 7): p. S109-S119. 40. Cannon, B. and J. Nedergaard, Brown adipose tissue: function and physiological significance. Physiol Rev, 2004. 84(1): p. 277-359. 41. Serra, D., et al., Mitochondrial fatty acid oxidation in obesity. Antioxidants & redox signaling, 2013. 19(3): p. 269-284. 42. Calderon-Dominguez, M., et al., Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte, 2015. 5(2): p. 98-118. 43. Feldmann, H.M., et al., UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab, 2009. 9(2): p. 203-9. 44. Ellis, J.M., et al., Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell metabolism, 2010. 12(1): p. 53-64. 45. Lee, J., J.M. Ellis, and M.J. Wolfgang, Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell reports, 2015. 10(2): p. 266-279. 46. Cypess, A.M., et al., Identification and importance of brown adipose tissue in adult humans. The New England journal of medicine, 2009. 360(15): p. 1509-1517. 47. Luu, S.U., et al., Ethanol and acetaldehyde metabolism in chinese with different aldehyde dehydrogenase-2 genotypes. Proc Natl Sci Counc Repub China B, 1995. 19(3): p. 129-36. 48. Wen, W., et al., Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Human molecular genetics, 2014. 23(20): p. 5492-5504. 49. Chang, Y.C., et al., Common ALDH2 genetic variants predict development of hypertension in the SAPPHIRe prospective cohort: gene-environmental interaction with alcohol consumption. BMC Cardiovasc Disord, 2012. 12: p. 58. 50. Fedorenko, A., P.V. Lishko, and Y. Kirichok, Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell, 2012. 151(2): p. 400-413. 51. Tolwani, R.J., et al., Medium-chain acyl-CoA dehydrogenase deficiency in gene-targeted mice. PLoS genetics, 2005. 1(2): p. e23-e23. 52. Chondronikola, M., et al., Brown Adipose Tissue Activation Is Linked to Distinct Systemic Effects on Lipid Metabolism in Humans. Cell Metab, 2016. 23(6): p. 1200-1206. 53. Poli, G., F. Biasi, and G. Leonarduzzi, 4-Hydroxynonenal-protein adducts: A reliable biomarker of lipid oxidation in liver diseases. Mol Aspects Med, 2008. 29(1-2): p. 67-71. 54. Long, E.K., D.M. Olson, and D.A. Bernlohr, High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free radical biology & medicine, 2013. 63: p. 390-398. 55. Castro, J.P., et al., 4-Hydroxynonenal (HNE) modified proteins in metabolic diseases. Free Radic Biol Med, 2017. 111: p. 309-315. 56. Ruskovska, T. and D.A. Bernlohr, Oxidative stress and protein carbonylation in adipose tissue - implications for insulin resistance and diabetes mellitus. Journal of proteomics, 2013. 92: p. 323-334. 57. Tseng, Y.-H., A.M. Cypess, and C.R. Kahn, Cellular bioenergetics as a target for obesity therapy. Nature Reviews Drug Discovery, 2010. 9: p. 465. 58. Gonzalez-Hurtado, E., et al., Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing. Molecular metabolism, 2018. 7: p. 45-56. 59. Bhat, A.H., et al., Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother, 2015. 74: p. 101-10. 60. Bhatti, J.S., G.K. Bhatti, and P.H. Reddy, Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis, 2017. 1863(5): p. 1066-1077. 61. Zhao, Y., et al., Redox proteomic identification of HNE-bound mitochondrial proteins in cardiac tissues reveals a systemic effect on energy metabolism after doxorubicin treatment. Free Radic Biol Med, 2014. 72: p. 55-65. 62. Poli, G., et al., 4-hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev, 2008. 28(4): p. 569-631. 63. Shringarpure, R., et al., 4-Hydroxynonenal-modified amyloid-β peptide inhibits the proteasome: possible importance in Alzheimer’s disease. 2000. 57(12): p. 1802-1809. 64. Castegna, A., et al., Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem, 2002. 82(6): p. 1524-32. 65. Grune, T., et al., Increased levels of 4-hydroxynonenal modified proteins in plasma of children with autoimmune diseases. 1997. 23(3): p. 357-360. 66. Naito, Y., et al., Lipid hydroperoxide-derived modification of proteins in gastrointestinal tract. Subcell Biochem, 2014. 77: p. 137-48. 67. Nakamura, K., et al., Carvedilol decreases elevated oxidative stress in human failing myocardium. 2002. 105(24): p. 2867-2871. 68. Biasi, F., et al., Associated changes of lipid peroxidation and transforming growth factor β1 levels in human colon cancer during tumour progression. 2002. 50(3): p. 361-367. 69. Marquez-Quiñones, A., et al., HNE-protein adducts formation in different pre-carcinogenic stages of hepatitis in LEC rats. 2010. 44(2): p. 119-127. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/668 | - |
dc.description.abstract | 東亞地區,有過40%的東亞人群攜帶ALDH2特有的錯義點突變(Glu487Lys),使其酵素在異合子酵素活性失去60-80%,同合子酵素活性失去約90%,此基因突變為全球盛行率最高之單一基因疾病(占~8%全球人口)。
ALDH2 (acetaldehyde dehydrogenase 2,mitochondria)是一粒線體內的酵素,代謝乙醛為乙酸。除此之外,ALDH2還會代謝多種有害醛類,包括人體的中間代謝、腸道細菌發酵、環境當中煙霧、香菸、各種塑料以及氧化壓力引發細胞脂肪過氧化而產生的有害醛類,如4-hydroxynonenal(4-HNE),而這些有害醛類會與蛋白質產生共價鍵修飾而改變其功能。 ALDH2特有的錯義性點突變(Glu487Lys)在東亞人全基因組掃描中被發現與肥胖與相關表現型有關,我們以模擬人類突變的ALDH2 *2/*2基因嵌入鼠為模型,發現ALDH2 *2/*2基因嵌入鼠在餵食高脂高糖的飲食下,相較於對照小鼠,體重明顯上升,胰島素阻抗性增加並伴隨脂肪肝與脂肪細胞肥厚。 在這項研究中,我們探討ALDH2 *2/*2基因嵌入鼠產生肥胖的原因,發現此小鼠能量消耗減少,起因推測可能與進食後產熱降低相關;另外觀察到嵌入鼠的棕色脂肪組織明顯變小。這些現象顯示此嵌入鼠可能因棕色脂肪組織功能減少、產熱降低,而產生肥胖。 我們進一步去探討分子機制,發現4-HNE會降低棕色脂肪細胞的脂肪酸氧化功能。利用LC-MS/MS,我們發現4-HNE會與脂肪酸氧化的酵素以及電子傳遞鏈上的酵素結合,綜上所述,推測ALDH2 *2/*2基因嵌入鼠會因為有害醛類累積,影響脂肪酸氧化與粒線體功能而造成小鼠肥胖。 | zh_TW |
dc.description.abstract | In East Asia, approximately 40% of the East Asian population carries an inactivating missense Glu487Lys mutation of ALDH2 (SNP671) gene. The ALDH2 enzymatic activity reduces to ~60-80 % in heterozygotes and ~90 % in homozygotes of mutants. It is the most prevalent monogenetic disease in the world (~8% global population).
ALDH2 (acetaldehyde dehydrogenase 2, mitochondria) is the primary enzyme responsible for metabolizing toxic acetaldehydes in mitochondria. ALDH2 also metabolizes a variety of toxic aldehydes, including acetaldehyde from intermediate metabolism, intestinal bacterial fermentation, environmental smog, cigarette smoke, various plastics and toxic aldehydes generated from lipid peroxidation by oxidative stress, such as 4-hydroxynonenal (4-HNE). These aldehydes modify proteins by forming covalently bond crosslinks, thereby altering their biological functions. Several recent large-scale meta-analysis of genome-wide association studies in East Asian identified ALDH2 Glu487Lys polymorphism is significantly associated with obesity and related metabolic phenotypes. In our study, we generated Aldh2 *2/*2 knock-in mice mimicking the human mutation as a model. We found that Aldh2 *2/*2 knock-in mice are prone to develop obesity, insulin resistance, fatty liver, and adipocyte hypertrophy on high-fat high sucrose diet as compared to controls. We found that the Aldh2 *2/*2 knock-in mice had significantly lower energy expenditure than controls. This reduction in energy expenditure may result from reduced diet-induced thermogenesis. In particular, the brown adipose tissue was markedly smaller in Aldh2 *2/*2 knock-in mice. This finding suggests the reduced thermogenesis of Aldh2 *2/*2 knock-in mice may result from impaired brown adipose tissue function. We further explored the molecular mechanism by which the knock-in mice have reduced brown adipose tissue function. We found 4-hydroxynonenal (4-HNE) inhibits fatty acid beta-oxidation in brown adipose tissue. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that 4-HNE modifies enzymes involved in fatty acid beta-oxidation and the electron transfer chain. In summary, we found that Aldh2 *2/*2 knock-in mice are prone to develop obesity, insulin resistance, and fatty liver due to reduced thermogenesis, which may be related to impaired development of brown adipose tissue and toxic aldehydes-mediated suppression of fatty acid oxidation and mitochondrial function. | en |
dc.description.provenance | Made available in DSpace on 2021-05-11T04:54:33Z (GMT). No. of bitstreams: 1 ntu-108-R06455005-1.pdf: 2665712 bytes, checksum: febd0a9253b8fa215b0001b7d71625f2 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v Chapter I Introduction 1 1.Aldehyde dehydrogenase 2 (ALDH2) serves as a crucial enzyme that catalyzes aldehydes metabolism but the Glu487Lys mutation causes East-Asian specific ALDH2 deficiency 1 2.The pathogenic effects of aldehydes through form different adducts in vivo 2 3.Lipid peroxidation-derived products association with obesity in adipose tissue 3 4.Brown adipose tissue thermogenesis and obesity 4 5.Rationale of this study 6 Chapter II Materials and Methods 7 1.Animal model 7 2.Glucose and insulin tolerance test 7 3.Energy expenditure, food intake and physical activity 8 4.Cold tolerance test and diet-induced thermogenesis test 8 5.RNA extraction and RTqPCR 9 6.Primary cell culture 10 7.Western blot analysis 11 8.Fatty acid oxidation assay 12 9.Isolation of brown adipose tissue mitochondria 14 10.In-solution digestion 15 11.LC-MS/MS analysis 15 12.Database analysis 16 Chapter III Result 17 1.Mice with ALDH2 Glu487Lys mutation display much more obesity phenotype during High-Fat-Diet 17 2.Aldh2 KI mice exhibit insulin resistance and glucose intolerance 18 3.Aldh2 KI mice have lower energy expenditure in response to HFHSD feeding and loss the fatty acid oxidation capacity in BAT 18 4.Aldh2 KI mice express higher levels of modified proteins 21 Chapter IV Discussion 24 FIGURE 27 TABLE 38 REFERENCE 39 | |
dc.language.iso | en | |
dc.title | 亞洲特異性ALDH2突變造成肥胖與胰島素阻抗性的分子機轉 | zh_TW |
dc.title | Asian-specific ALDH2 mutation causes obesity and
insulin resistance: molecular mechanism | en |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊立民,黃祥博 | |
dc.subject.keyword | 乙醛脫氫?,醛類,4-羥基壬烯醛,肥胖,能量消耗, | zh_TW |
dc.subject.keyword | ALDH2, aldehyde,4-hydroxynonenal,obesity,energy expenditure, | en |
dc.relation.page | 44 | |
dc.identifier.doi | 10.6342/NTU201902784 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-08-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | zh_TW |
Appears in Collections: | 基因體暨蛋白體醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf | 2.6 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.