Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66875
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林博雄(Po-Hsiung Lin)
dc.contributor.authorYu-Min Huangen
dc.contributor.author黃彧珉zh_TW
dc.date.accessioned2021-06-17T01:10:04Z-
dc.date.available2020-01-21
dc.date.copyright2020-01-21
dc.date.issued2020
dc.date.submitted2020-01-16
dc.identifier.citation陳泰然、周鴻祺、廖珮娟、楊進賢,2009:暖季午後台灣中北部午後連續對流的氣候特徵研究。大氣科學,37,No.1,49-86。
戴志輝、林得恩、賴世運,2008:台灣北部午後對流閃電與綜觀氣流風向之關係。大氣科學,36,No.3,, 179-196。
Haynes, J. M., and G. L. Stephens, 2007:Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat, Geophysical Research Letters,34,L09811.
Hohenegger, C., and B. Stevens, 2013:Preconditioning deep convection with cumulus congestus, Journal of the Atmospheric Sciences,70,448–464.
Hu, J., A. Razdan, and J. A. Zehnder, 2009:Geometric calibration of digital cameras for 3D cumulus cloud measurements. Journal of Atmospheric and Oceanic Technology,26,200–214.
Jensen, M. P., and A. D. Del Genio, 2006:Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility, Journal of Climate,19,2105–2117.
Johnson, R. H., P. E. Ciesielski, and K. A. Hart, 1996:Tropical inversions near the 0°C level, Journal of the Atmospheric Sciences,53,1838–1855.
Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999:Trimodal characteristics of tropical convection, Journal of Climate,12,2397–2418.
Khairoutdinov, M., and D. Randall, 2006:High-resolution simulation of shallow-to deep convection transition over land. Journal of the Atmospheric Sciences,63,3421–3436.
Kirshbaum, D. J., 2011:Cloud-Resolving Simulations of Deep Convection over a Heated Mountain. Journal of the Atmospheric Sciences,68,361-378.
Kumar, V. V., C. Jakob, A. Protat, P. T. May, and L. Davies, 2013:The four cumulus cloud modes and their progression during rainfall events: A C-band polarimetric radar perspective, Journal of Geophysical Research: Atmospheres,118,8375–8389.
Kyle,T.G.,W.R.Sand and D.J.Musil, 1976:Fitting measurements of thunderstorm updraft profiles to model profiles. Monthly Weather Review,104,611-617.
Luo, Z., J. Jeyaratnam, S. Iwasaki, H. Takahashi, and R. Anderson, 2014 : Convective vertical velocity and cloud internal vertical structure: An A-Train perspective. Geophysical Research Letters,41,723–729.
Malkus, J.S., and H. Riehl, 1964 : Cloud structure and distributions over the tropicalPacific Ocean. Tellus A.,16,275 – 287.
Orville, H.D., 1965 : A photogrammetric study of the initiation of cumulus clouds over mountainous terrain. Journal of the Atmospheric Sciences.,22,700–709.
Posselt, D. J., S. C. van den Heever, and G. L. Stephens, 2008 : Trimode cloudiness and tropical stable layers at radiative convective equilibrium, Geophys. Res. Lett.,35,1-5.
Redelsperger, J.-L., D. B. Parsons, and F. Guichard, 2002 : Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE, Journal of the Atmospheric Sciences,59,2438–2457.
Romps, D. M. and Öktem, R., 2015 : Stereo photogrammetry reveals substantial drag on cloud thermals. Geophysical Research Letters,42,5051–5057.
Romps, D. M. and Öktem, R., 2018 : Observing clouds in 4D with multiview stereo photogrammetry, Bulletin of the American Meteorological Society,99,2575– 2586.
Seiz, G., E. P. Baltsavias, and A. Gruen, 2002 : Cloud mapping from the ground : Use of photogrammetric methods. Photogrammetric Engineering and Remote Sensing,68,941–951.
Takayabu, Y. N., J. Yokomori, and K. Yoneyama, 2006 : A diagnostic study on interactions between atmospheric thermodynamic structure and cumulus convection over the tropical western Pacific Ocean and over the Indochina peninsula, Journal of the Meteorological Society of Japan.,84,151–169.
Takemi, T., O. Hirayama, and C. Liu, 2004 : Factors responsible for the vertical development of tropical oceanic cumulus convection, Geophysical Research Letters, 31, L11109.
Todd, C.J., 1964 : Aircraft traverses in a growing mountain cumulus cloud. Journal of the Atmospheric Sciences,21,529-538.
Warner, C., J. H. Renick, M. W. Balshaw, and R. H. Douglas, 1973 : Stereo photogrammetry of cumulonimbus clouds. Quarterly Journal of the Royal Meteorological Society,99,105–115.
Woodward, B., 1959 : The motion in and around isolated thermals, Quarterly Journal of the Royal Meteorological Society, 85,144-151.
Zehnder, J.A., J. Hu, A. Razdan, 2007 : A stereo photogrammetric technique applied to orographic convection . Monthly Weather Review,135,2265–2277.
Zehnder, J. A., L. Zhang, D. Hansford, A. Radzan, N. Selover, and C. M. Brown, 2006 : Using digital cloud photogrammetry to characterize the onset and transition from shallow to deep convection over orography. Mon. Wea. Rev.,134,2527–2546.
Zehnder, J., J. Hu, and A. Radzan, 2009 : Evolution of the vertical thermodynamic profile during the transition from shallow to deep convection during CuPIDO 2006. Monthly Weather Review,137,937-953.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66875-
dc.description.abstract熱帶地區的對流發展是由三種對流雲所組成,其中介於淺對流與深對流之間的濃積雲,除了在深淺對流轉換中扮演關鍵角色。近年來已出現許多相關研究,不過對於濃積雲的發展高度仍然缺乏明確客觀的界定。
雙相機攝影測量是一種利用兩台相機來測量物體於三度空間中位置的技術,本研究利用該觀測技術,在桃園濱海架設兩台自動化相機朝北台灣山區方向進行觀測,並利用地面山脈與夜空恆星來取得影像的方位角與仰角,計算出北台灣2017年6月到9月發生午後對流時的對流雲頂高度。最後選出五天在時間與發展高度觀測最完整與清楚的個案進行觀測結果分析,並分析每個高度區間的垂直上升速度、垂直上升加速度與雲頂寬度,找出濃積雲與深對流的差異。
分析結果顯示,對流雲在往上發展時,垂直上升加速度會隨高度上升減速程度越來越大,直到約8-9公里突然有較大的加速度,然後再隨著高度上升而下降;雲頂寬度則是隨高度上升越來越寬,直到約8-9公里突然變窄,再隨著高度上升而越來越寬;垂直上升速度則是在8-9公里以下常呈現穩定上升的趨勢,此外並沒有發現明顯一致的特徵。分析各高度區間對流雲數量的結果顯示,對流雲在大約7-12公里上下會出現數量低值,與垂直上升加速度、雲頂寬度出現特徵的高度相當接近但不一致。
zh_TW
dc.description.abstractTropical convective cloud has been observed to contain three cloud modes. Cumulus congestus clouds between cumulus and deep convection plays an important role in the transition from shallow to deep convection. Many related studies have improved the understanding of cumulus congestus, but there is still lack of clear and objective definition of its cloud top height.
Stereo-photogrammetry is a technique that uses two cameras to measure the position of an object in three-dimensional coordinates. This research uses this technique to set up two automated cameras at Taoyuan coastal toward mountian, and use the mountains and stars in the image to obtain the azimuth and elevation to calculate cloud top height of afternoon convection in northern Taiwan from June to September 2017. Five of the most complete and clearest cases are selected to analysis. And analyzes the vertical velocity, vertical acceleration and cloud top width of each altitude level to find the difference between cumulus congestus and deep convection.
The results indicate that when convective cloud develops upwards, the vertical acceleration will decelerate with height and suddenly increase until it reaching 8-9 km, and then keep decelerate with height; the width of cloud top is exactly the opposite of the acceleration change.; the vertical velocity tends to increase steadily with height below 8-9 km. The results of analyzing the amount of convective clouds in each height level show that the convective cloud will have a low value around 7-12 km, which is close but not consistent with the result of vertical acceleration and cloud top width.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:10:04Z (GMT). No. of bitstreams: 1
ntu-109-R04229013-1.pdf: 11889104 bytes, checksum: bbfb6d53cbd2308bd142df112871bc38 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 文獻回顧 1
1.2 研究動機 3
1.3 論文架構與目標 4
第二章 觀測方法與資料處理 6
2.1 雙相機攝影測量 6
2.2 相機硬體與空間方位 6
2.3 影像處理與分析流程 9
2.3.1 雲頂特徵擷取 9
2.3.2 雲頂特徵追蹤 10
2.3.3 兩地雲頂匹配 12
2.3.4 外方位參數分析 14
2.3.5 雲頂空間計算與去除誤差 17
2.3.6 對流雲頂運動參數計算與統計方式 18
2.4 水平距離誤差與垂直速度誤差估計方法 19
2.5 2017年雙相機攝影測量個案列表 20
第三章 2017年6月7日鋒前西南風個案分析 21
3.1 6月7日綜觀尺度天氣背景分析 21
3.2 6月7日北台灣陸地午後對流概況 22
3.3 相機觀測結果分析 23
3.3.1 對流雲頂的時空分布 23
3.3.2 不同高度的運動特徵 28
第四章 2017年夏季弱綜觀天氣個案比較 30
4.1 7月11日午後對流個案 30
4.1.1 7月11日綜觀尺度天氣背景分析 30
4.1.2 7月11日相機觀測結果 30
4.2 8月6日午後對流個案 31
4.2.1 8月6日綜觀尺度天氣背景分析 31
4.2.2 8月6日相機觀測結果 32
4.3 8月19日午後對流個案 35
4.3.1 8月19日綜觀尺度天氣背景分析 35
4.3.2 8月19日相機觀測結果 35
4.4 8月28日午後對流個案 38
4.4.1 8月28日綜觀尺度天氣背景分析 38
4.4.2 8月28日相機觀測結果 39
4.5 觀測個案小結 40
第五章 結論與展望 42
5.1 濃積雲發展高度綜合特徵 42
5.2 總結 45
5.3 討論與展望 47
參考文獻 49
dc.language.isozh-TW
dc.subject濃積雲zh_TW
dc.subject午後對流zh_TW
dc.subject攝影測量zh_TW
dc.subject雲頂高度zh_TW
dc.subject垂直速度zh_TW
dc.subjectstereo-photogrammetryen
dc.subjectcloud top heighten
dc.subjectcumulus congestusen
dc.subjectafternoon convectionen
dc.subjectvertical velocityen
dc.title雙相機攝影法推估對流雲發展高度與對流特徵–以2017年夏季北台灣午後對流個案為例zh_TW
dc.titleThe Characteristic Study on Convective Cloud by Stereo Photogrammetric Method–Afternoon Convective Cases at Northern Taiwan,2017en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳健銘(Chien-Ming Wu),劉清煌(Ching-Hwang Liu)
dc.subject.keyword濃積雲,午後對流,攝影測量,雲頂高度,垂直速度,zh_TW
dc.subject.keywordcumulus congestus,afternoon convection,stereo-photogrammetry,cloud top height,vertical velocity,en
dc.relation.page114
dc.identifier.doi10.6342/NTU202000140
dc.rights.note有償授權
dc.date.accepted2020-01-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
11.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved