Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66871
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝學真(Hsyue-Jen Hsieh)
dc.contributor.authorPo-Hsun Chiuen
dc.contributor.author邱柏勛zh_TW
dc.date.accessioned2021-06-17T01:09:59Z-
dc.date.available2026-02-05
dc.date.copyright2021-03-22
dc.date.issued2021
dc.date.submitted2021-02-03
dc.identifier.citation[1] Huang ZM, Zhang YZ, Kotaki M and Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63(15), 2223-2253.
[2] Ray SS, Chen SS, Li CW, Nguyenac NC, Nguyenac HT. A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances, 2016, 6(88), 85495-85514.
[3] Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Review, 2019, 119(8), 5298-5415.
[4] Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer, 1999, 40(16), 4585-4592.
[5] Reneker DH., Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 2000, 87(9), 4531-4547.
[6] Sas I, Gorga RE, Joines JA, Thoney KA. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(12), 824-845.
[7] Baji A, Mai YW, Wong SC, Abtahi M, Chen P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 2010, 70(5), 703-718.
[8] Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 1995, 35(2-3), 151-160.
[9] Niu H, Zhou H, Wang HX. Electrospinning: an advanced nanofiber production technology. Energy Harvesting Properties of Electrospun Nanofibers. 2019, Chapter 1, 1-44.
[10] Cross MM. Viscosity, molecular weight and chain entanglement. Polymer, 1970, 11(5), 238-244.
[11] Biber E, Gündüz G, Mavis B, Colak U. Effects of electrospinning process parameters on nanofibers obtained from Nylon 6 and poly (ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using Johnson SB statistical distribution function. Applied Physics A, 2010, 99(2), 477-487.
[12] Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer, 2002, 43(11), 3303-3309.
[13] Yao L, Haas TW, Guiseppi-Elie A, Bowlin GWL, Simpson DG, Wnek GE. Electrospinning and Stabilization of Fully Hydrolyzed Poly(Vinyl Alcohol) Fibers. Chemistry of Materials, 2003, 15(9), 1860 -1864.
[14] Jung YH, Kim HY, Lee DR, Park SY, Khil MS. Characterization of PVOH nonwoven mats prepared from Surfactant-Polymer system via electrospinning. Macromolecular Research, 2005, 13, 385 – 390.
[15] Jiang H, Fang D, Hsiao BS, Chu B, Chen W. Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules, 2004, 5(2), 326–333.
[16] Hayati I, Bailey AI, Tadros TF. Investigations into the mechanisms of electrohydrodynamic spraying of liquids: I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. Journal of Colloid and Interface Science, 1987, 117(1), 205–221.
[17] Angammana CJ, Jayaram SH. Analysis of the Effects of Solution Conductivity on Electrospinning Process and Fiber Morphology. IEEE Transactions on Industry Applications, 2011, 47(3), 1109-1117.
[18] Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, Toit LC, Ndesendo VMK. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. Journal of Nanomaterials, 2013, 1-22.
[19] Sill TJ, Recum HA. Electrospinning: applications indrug delivery and tissue engineering. Biomaterials, 2008, 29(13), 1989–2006.
[20] Beachley V, Wen X. Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering C, 2009, 29(3), 663–668.
[21] Huang YS, Kuo CC, Huang CC, Jang SC, Tsen WC, Chuang FS, Chen BY, Chen JJ, Chow JD, Shu YC. Novel highly aligned, double-layered, hollow fibrous polycarbonate membranes with a perfectly tightly packed pentagonal pore structure fabricated using the electrospinning process. RSC Advances ,2015, 5(108), 88857-88865.
[22] Deitze JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42(1), 261-272.
[23] Tang XP, Si N, Xu L, Liu HY. Effect of flow rate on diameter of electrospun nanoporous fibers. Thermal Science, 18(5), 1447–1449.
[24] Megelski S, Stephens JS, Chase DB, Rabolt JF. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 2002, 35(22), 8456-8466.
[25] Haitao N, Tong L, Xungai W. Needleless electrospinning. I. A comparison of cylinder and disk nozzles. Journal of Applied Polymer Science, 2009, 114(6), 3524–3530.
[26] Hardick O, Stevens B, Bracewell DG. Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency. Journal of Materials Science, 2011, 46, 3890–3898.
[27] Bae HS, Haider A, Selim KMK, Kang DY, Kim EJ, Kang IK. Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. Journal of Polymer Research, 2013, 20(7), 1-7.
[28] Pelipenko J, Kristl J, Janković B, Baumgartner S, Kocbek P. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International Journal of Pharmaceutics, 2013, 456(1), 125-134.
[29] Valipouri A. Production Scale up of Nanofibers: A Review. Journal of Textiles Polymers, 2017, 5(1), 8–16.
[30] Ali U, Wang X, Lin T. Effect of nozzle polarity and connection on electrospinning of polyacrylonitrile nanofibers. The Journal of The Textile Institute ,2012, 103(11), 1160–1168.
[31] Liu Y, Zhang L, Sun XF, Liu J, Fan J, Huang DW. Multi-jet electrospinning via auxiliary electrode. Materials Letters, 2015, 141, 153-156.
[32] Akampumuza O, Gao H, Zhang H, Wu D, Qin XH. Raising Nanofiber Output: The Progress, Mechanisms, Challenges, and Reasons for the Pursuit. Macromolecular Materials and Engineering, 2018, 303(1), 1700269.
[33] SalehHudin HS, Mohamad EN, Mahadi WNL, Afifi AM. Multiple-jet electrospinning methods for nanofiber processing: A review. Materials and Manufacturing Processes, 2018, 33(5), 479-498.
[34] Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Gañán-Calvo AM. Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets. Science, 2002, 295(5560), 1695–1698.
[35] McCann JT, L D, Xia YN. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. Journal of Materials Chemistry, 2005, 15(7), 735–738.
[36] Yu DG, Yu JH, Chen L, Williams GR, Wang X. Modified Coaxial Electrospinning for the Preparation of High-Quality Ketoprofen-Loaded Cellulose Acetate Nanofibers. Carbohydrate Polymers, 2012, 90(2), 1016–1023.
[37] Sasithorn N, Martinová L. Fabrication of Silk Fibroin Nanofibres by Needleless Electrospinning. Electrospinning - Material, Techniques, and Biomedical Applications, Chapter 5, 2016.
[38] Junoh H, Jaafar J, Norddin MNAM, Ismail AF, Othman MHD, Rahman MA, Yusof N, Salleh WNW, Ilbeygi H. A Review on the Fabrication of Electrospun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell. Journal of Nanomaterials, 2015, 1-16.
[39] Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials, 1999, 20(6), 573-588.
[40] Kuo TY, Lin CM, Hung SC, Hsien TY, Wang DM, Hsieh HJ. Incorporation and selective removal of space-forming nanofibers to enhance the permeability of cytocompatible nanofiber membranes for better cell growth. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 146-154.
[41] Schneider OD, Mohn D, Fuhrer R, Klein K, Kämpf K, Nuss KMR, Sidler M, Zlinszky K, Rechenberg B, Stark WJ. Biocompatibility and Bone Formation of Flexible, Cotton Wool-like PLGA/Calcium Phosphate Nanocomposites in Sheep. The Open Orthopaedics Journal, 2011, 511(63), 63-71.
[42] Sheikh FA, Ju HW, Lee JM, Moon BM, Park HJ, Lee OJ, Kim JH, Kim DK, Park CH. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11(3):681-691.
[43] Sun Y, Cheng S, Lu WJ, Wang YF, Zhang PP, Yao QQ. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Advances, 2019, 9(44): 25712-25729.
[44] Ruys AJ. Biomimetic Biomaterials: Structure and Applications. Woodhead, 2013.
[45] 江啟聖, Chitosan對已被覆生醫陶瓷Ti6Al4V植入用合金之影響, 國立中興大學材料科學與工程學系所碩士論文, 2006.
[46] Kumar MNVR. A review of chitin and chitosan applications. Reactive and Functional Polymers, 2000, 46(1), 1-27.
[47] Chen PH, Kuo TY, Liu FH, Hwang YH, Ho MH, Wang DM, Lai JY, Hsieh HJ. Use of dicarboxylic acids to improve and diversify the material properties of porous chitosan membranes. Journal of Agricultural and Food Chemistry, 2008, 56(19), 9015-9021.
[48] Shepherd R, Reader S, Falshaw A. Chitosan functional properties. Glycoconjugate Journal, 1997, 14, 535-542.
[49] Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste, Food Hydrocolloids, 2012, 29(1),48-56.
[50] Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. International Journal of Molecular Sciences, 2019, 20(23), 5889.
[51] Wang XH, Du YM, Fan LH, Liu H, Hu Y. Chitosan- metal complexes as antimicrobial agent: Synthesis, characterization and Structure-activity study. Polymer Bulletin, 2005, 55(1-2): 105-113.
[52] Tyagi A, Agarwal S, Leekha A, Verma AK. Effect of Mass and Aspect Heterogeneity of Chitosan Nanoparticles on Bactericidal Activity. International Journal of Advanced Research, 2014, 2(8), 357-367.
[53] Sahariah P, Masson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship. Biomacromolecules, 2017, 18(11), 3846-3868.
[54] Eldin MSM, Soliman EA, Hashem AI, Tamer TM. Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications. Advances in Polymer Technology, 2011, 31(4), 414-428.
[55] Peng YF, Han BQ, Liu WS, Xu XJ. Preparation and antimicrobial activity of hydroxypropyl chitosan. Carbohydrate Research, 2005, 340(11), 1846–1851.
[56] Badawy MEI, Rabea EI. Characterization and antimicrobial activity of water-soluble N-(4-carboxybutyroyl) chitosans against some plant pathogenic bacteria and fungi. Carbohydrate Polymers, 2012, 87(1), 250– 256.
[57] Lahmer RA, Jones DL, Townsend S, Baker S, Williams AP. Susceptibility of Escherichia coliO157 to chitosan-arginine in beef liquid purge is affected by bacterial cell growth phase. International Journal of Food Science Technology, 2013, 49(2), 515-520.
[58] Fu XR, Shen Y, Jiang X, Huang D, Yan YQ. Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydrate Polymers, 2011, 85(1), 221– 227.
[59] Tan HL, Ma R, Lin CC, Liu ZW, Tang TT. Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. International Journal of Molecular Science, 2013, 14(1), 1854-1869.
[60] Peng ZX, Wang L, Du LZ, Guo SR, Wang XQ, Tang TT. Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydrate Polymers, 2010, 81(2), 275–283.
[61] Gómez-Guillén MC, Giménez B,. López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 2011, 25(8), 1813-1827.
[62] Samal SK, Dash M, Vlierberghe SV, Kaplan DL, Chiellini E, Blitterswijk C, Moroni L, Dubruel P. Cationic polymers and their therapeutic potential. Chemical Society Reviews, 2012, 41(21), 7147-7194.
[63] Kommareddy S, Shenoy DB, Amiji MM. Gelatin Nanoparticles and Their Biofunctionalization. Nanotechnologies for the Life Sciences, 2007.
[64] D'Souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends in Biochemical Sciences, 1991, 16(7), 246-250.
[65] Thompson MS, Vadala TP, Vadala ML, Lin Y, Riffle JS. Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers. Polymer, 2008, 49(2), 345-373.
[66] Ma LL, Deng L, Chen JM. Applications of poly(ethylene oxide) in controlled release tablet systems: a review. Drug Development and Industrial Pharmacy, 2014, 40(7), 845-851.
[67] Lu JW, Zhu YL, Guo ZX, Hu P, Yu J. Electrospinning of sodium alginate with poly(ethylene oxide). Polymer, 2006, 47(23), 8026-8031.
[68] . Azeredo HMC, Waldron KW. Crosslinking in polysaccharide and protein films and coatings for food contact – A review. Trends in Food Science Technology, 2016, 52, 109-122.
[69] Martinez AW, Caves JM, Ravi S, Li WS, Chaikof EL. Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomaterialia, 2014, 10(1), 26–33.
[70] Jiang QR, Reddy N, Yang YQ. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomaterialia, 2010, 6(10), 4042–4051.
[71] Lai JY. Interrelationship between crosslinking structure, molecular stability and cytocompatibility of amniotic membranes crosslinked with glutaraldehdye of varying concentrations. RSC Advances, 2014, 4(36), 18871–18880.
[72] Umashankar PR, Mohanan PV, Kumari TV. Glutaraldehyde treatment elicits toxic response compared to decellularization in bovine pericardium. Toxicology International, 2012, 19(1), 51–58.
[73] 郭婷芸, 幾丁聚醣/明膠/聚氧化乙烯電紡複合纖維膜之製備、滲透率及強度之改善、及其於細胞培養之應用, 國立臺灣大學化學工程學研究所博士論文, 2018.
[74] Rojas J, Azevedo E. Functionalization and crosslinking of microcrystalline cellulose in aqueous media: A safe and economic approach. International Journal of Pharmaceutical Sciences Review and Research, 2011, 8(1), 28-36.
[75] Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 2004, 37(5), 790-796, 798-802.
[76] Ostrowska-Czubenko J, Pieróg M, Gierszewska-Drużyńska M. State of water in noncrosslinked and crosslinked hydrogel chitosan membranes - DSC studies. Progress on Chemistry and Application of Chitin and its Derivatives, 2011, 16, 147-156.
[77] Islam N, Dmour I, Taha MO. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon, 2019, 5(5), e01684.
[78] Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nature Protocols, 2016,11(10), 1775-1781.
[79] Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of Tissue Engineering, 2014, 5, 1-17.
[80] Lim SH, Hudson SM. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate Research, 2004, 339(2), 313-319.
[81] Cho J, Grant J, Piquette-Miller M, Allen C. Synthesis and physicochemical and dynamic mechanical properties of a water-soluble chitosan derivative as a biomaterial. Biomacromolecules, 2006, 7(10), 2845-2855.
[82] 林哲民, 以幾丁聚醣為基底之電紡纖維膜製備、特性分析及其於傷口敷料及藥物釋放之應用, 國立台灣大學化學工程學研究所博士論文, 2020.
[83] Álvarez E, Vázquez G, Sánchez-Vilas M, Sanjurjo B, Navaza JM. Surface Tension of Organic Acids + Water Binary Mixtures from 20 °C to 50 °C. Journal of Chemical Engineering Data, 1997, 42(5), 957-960.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66871-
dc.description.abstract本研究使用去乙醯度為91.7%之幾丁聚醣與縮水甘油基三甲基氯化銨(glycidyltrimethylammonium chloride, GTMAC)在純水中進行開環反應製備含有四級銨鹽官能基之水溶性幾丁聚醣(N-[(2-hydroxyl)-propyl-3-trimethylammonium] chitosan chloride, 簡稱HTCC),並探討幾丁聚醣與GTMAC在不同反應條件與純化過程下之產率差異,再進一步使用FT-IR、NMR鑑定HTCC之分子結構;以導電度滴定法測定HTCC之取代度。實驗顯示反應體積161.857 ml、反應溫度85℃、GTMAC當量數為4,以及反應時間為6小時及8小時之HTCC產物,簡稱HTCC-6與HTCC-8具有較佳之產率、純度及胺基取代度。
隨後配製分別含有HTCC-6與HTCC-8之電紡溶液,測量溶液黏度等性質,再將電紡溶液在不同製程參數下製成電紡纖維,並以SEM觀察纖維型態,探討電紡參數與溶液性質對於纖維型態的影響,找出適合大量製備電紡纖維的操作條件,其中組成為C2.5H2.5G5P0.5AA20-6之電紡溶液在電壓25 kV、溶液流量0.05 ml/min之的電紡條件下之纖維型態最佳。
為提高纖維膜的穩定性,針對C2.5H2.5G5P0.5AA20-6纖維膜進行戊二醛蒸氣交聯,經探討發現交聯時間為1.5小時的纖維膜具有較佳的機械性質以及在水相環境中的穩定性。最後將交聯後的纖維膜進行抗菌性測試,結果發現纖維膜能在與大腸桿菌(菌株BL21(DE3))接觸的20小時內將細菌數減至極少,具有良好抗菌能力。
本研究成功合成水溶性幾丁聚醣衍生物HTCC,也成功製備了含有HTCC之複合電紡纖維膜,並且證實此纖維膜對於大腸桿菌具有良好的抗菌能力,未來可將此含有四級銨鹽化幾丁聚醣(HTCC)複合電紡纖維膜發展成為抗菌性生醫材料。
zh_TW
dc.description.abstractIn this study, chitosan (degree of deacetylation: 91.7%) was used to react with glycidyltrimethylammonium chloride (GTMAC) to synthesize water-soluble chitosan — (N-[(2-hydroxyl)-propyl-3-trimethylammonium] chitosan chloride (HTCC), with quaternary salt functional groups. In addition, how the reaction yield and degree of substitution varied with reaction time and other reaction parameters were also investigated. The characteristics of HTCC were further examined by NMR, FT-IR and conductometric titration analysis. Eventually, two products (HTCC-6 and HTCC-8) had relatively better yields, purities and proper degree of substitutions.
In order to find proper electrospinning parameters, various composite solutions containing HTCC-6 or HTCC-8 were prepared and used for fabrication of fibers by electrospinning device under different process parameters, such as applied voltage and solution flow rate. Based on the SEM images of these fibers, a solution named C2.5H2.5G5P0.5AA20-6 could be electrospun into fibers with desired morphologies under the conditions of applied voltage 25 kV and flow rate 0.05 ml/min.
To increase the stability of fibers, the above-mentioned C2.5H2.5G5P0.5AA20-6 fibrous membrane was crosslinked by glutaraldehyde vapor. It was found that crosslinking time of 1.5 hours could enhance the tensile strength and stability of the fibrous membranes. The crosslinked membrane was subjected to in vitro antibacterial test. C2.5H2.5G5P0.5AA20-6 fibrous membrane was incubated with E. coli (strain BL21 (DE3)) for 20 hours and only very few bacteria survived on the fibrous membrane, indicating that C2.5H2.5G5P0.5AA20-6 fibrous membrane possessed great antibacterial activity against E. coli. at physiological pH (pH 7).
In conclusion, the water-soluble chitosan derivative HTCC was successfully synthesized and used for fabrication of HTCC-containing composite electrospun fibrous membrane (C2.5H2.5G5P0.5AA20-6 membrane) which exhibited good antibacterial ability against E. coli, thus being a promising antibacterial biomaterial.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:09:59Z (GMT). No. of bitstreams: 1
U0001-0102202121041600.pdf: 7278840 bytes, checksum: 1ff176cafaa2c128a53a3c90cb7d6e85 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XVII
縮寫與符號說明 XIX
中英名詞對照表 XXI
第一章 緒論 1
1.1 研究背景 1
1.2 研究流程與架構 3
第二章 文獻回顧 5
2.1 靜電紡絲法 5
2.1.1 靜電紡絲法發展及原理 5
2.1.2 靜電紡絲技術之影響因素 7
2.1.2.1 溶液性質 8
2.1.2.2 電紡製程參數 9
2.1.2.3 環境因素 11
2.1.3 靜電紡絲裝置分類 13
2.1.3.1 針頭設計方式 13
2.1.3.2 收集器裝置類型 17
2.1.4 靜電紡絲纖維在生物醫學的應用 18
2.2 生醫材料 19
2.2.1 幾丁聚醣 20
2.2.2 水溶性幾丁聚醣衍生物 22
2.2.3 明膠 24
2.2.4 聚氧化乙烯 26
2.3 交聯劑 27
第三章 實驗藥品、儀器與方法 31
3.1 實驗藥品 31
3.2 實驗儀器 33
3.3 實驗方法 35
3.3.1 HTCC合成與純化 35
3.3.1.1 Gt4C1V140-6、Gt4C1V140-8、Gt4C1V140-10合成與純化 35
3.3.1.2 Gt1C1V60-8、Gt2C1V60-8、Gt2C1V60-8、Gt4C1V60-10合成與純化 36
3.3.2 幾丁聚醣與HTCC之FT-IR圖譜測定 39
3.3.3 幾丁聚糖與HTCC之NMR圖譜測定 39
3.3.4 以導電度滴定法測定HTCC之胺基取代度 40
3.3.4.1 Fajans method標定硝酸銀溶液 40
3.3.4.2 硝酸銀標準溶液標定HTCC胺基取代度 41
3.3.5 電紡溶液配製 42
3.3.6 電紡溶液物化性質分析 44
3.3.6.1 導電度測定 44
3.3.6.2 黏度測定 44
3.3.6.3 表面張力測定 45
3.3.7 電紡纖維膜製備 46
3.3.7.1 合適大量製備之電紡參數尋找 46
3.3.7.2 電紡纖維膜大量製備 47
3.3.8 電紡纖維膜交聯 50
3.3.9 電紡纖維膜特性分析 50
3.3.9.1 掃描式電子顯微鏡(Scanning Electron Microscope)觀察型態 50
3.3.9.2 膜材機械性質分析 51
3.3.9.3 纖維直徑與孔洞直徑分析 52
3.3.9.4 崩解性測定 53
3.3.10 電紡纖維膜抗菌性測定 54
3.3.10.1 細菌培養及CFU/ml對O.D.值之檢量線製作 54
3.3.10.2 抗菌生長測試 55
第四章 結果與討論 57
4.1 HTCC合成與純化實驗結果 57
4.2 幾丁聚醣與HTCC之FT-IR圖譜鑑定結果 60
4.3 導電度滴定法測定HTCC之胺基取代度 64
4.4 幾丁聚醣與HTCC之NMR圖譜鑑定結果 68
4.5 靜電紡絲溶液物化性質分析 71
4.5.1 溶液黏度分析 71
4.5.2 溶液導電度分析 74
4.5.3 溶液表面張力分析 76
4.6 製程參數對奈米纖維型態之影響 78
4.6.1 不含明膠、幾丁聚醣、醋酸之電紡溶液纖維型態探討 78
4.6.1.1 HTCC-6與PEO濃度變化對纖維型態影響探討 78
4.6.1.2 HTCC-8與PEO濃度變化對纖維形態影響探討 85
4.6.2 含明膠、幾丁聚醣、醋酸之電紡溶液纖維形態探討 91
4.6.2.1 HTCC-8與幾丁聚醣濃度變化對纖維形態影響 91
4.6.2.2 HTCC-6與幾丁聚醣濃度變化對纖維形態影響探討 97
4.7 電紡纖維膜特性分析 101
4.7.1 電紡纖維膜直徑與孔洞大小分析 101
4.7.2 電紡纖維膜機械性質分析 103
4.7.3 電紡纖維膜崩解性測試 106
4.8 電紡纖維膜抗菌性測定 111
4.8.1 CFU值對O.D.值檢量線 111
4.8.2 體外抗菌生長實驗 112
第五章 結論與未來研究方向 115
5.1 結論 115
5.2 未來研究方向 118
參考文獻 121
dc.language.isozh-TW
dc.title提升抗菌性之四級銨鹽化幾丁聚醣合成及幾丁聚醣複合電紡纖維膜之製備與特性探討zh_TW
dc.titleSynthesis of Quaternized Chitosan with Enhanced Antimicrobial Activity and Preparation and Characterization of Chitosan Composite Electrospun Fibrous Membranesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王大銘(Da-Ming Wang),謝子陽(Tzu-Yang Hsien)
dc.subject.keyword幾丁聚醣,四級銨鹽化幾丁聚醣,靜電紡絲,抗菌材料,zh_TW
dc.subject.keywordchitosan,quaternized chitosan,electrospinning,antibacterial material,en
dc.relation.page133
dc.identifier.doi10.6342/NTU202100347
dc.rights.note有償授權
dc.date.accepted2021-02-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0102202121041600.pdf
  目前未授權公開取用
7.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved