Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66868Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 吳錫侃(Shyi-Kaan Wu) | |
| dc.contributor.author | Yu-Hsien Lin | en |
| dc.contributor.author | 林祐賢 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:09:55Z | - |
| dc.date.available | 2025-02-04 | |
| dc.date.copyright | 2020-02-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-16 | |
| dc.identifier.citation | [1] K.-H. Huang, J. Yeh, A study on the multicomponent alloy systems containing equal-mole elements, Hsinchu: National Tsing Hua University (1996).
[2] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials 6(5) (2004) 299-303. [3] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375-377 (2004) 213-218. [4] J.-W. Yeh, Recent progress in high-entropy alloys, European Journal of Control 31 (2006) 633-648. [5] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, S.-Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A 36(5) (2005) 1263-1271. [6] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A 36(4) (2005) 881-893. [7] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706. [8] O.N. Senkov, S.L. Semiatin, Microstructure and properties of a refractory high-entropy alloy after cold working, Journal of Alloys and Compounds 649 (2015) 1110-1123. [9] J.P. Couzinié, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, I. Guillot, On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy, Materials Science and Engineering: A 645 (2015) 255-263. [10] Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Materials Letters 130 (2014) 277-280. [11] Y.X. Ye, Z.P. Lu, T.G. Nieh, Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy, Scripta Materialia 130 (2017) 64-68. [12] C.-C. Juan, M.-H. Tsai, C.-W. Tsai, W.-L. Hsu, C.-M. Lin, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining, Materials Letters 184 (2016) 200-203. [13] M.-H. Tsai, J.-W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters 2(3) (2014) 107-123. [14] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics 26 (2012) 44-51. [15] M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Muñoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, E. Karapetrova, Absence of long-range chemical ordering in equimolar FeCoCrNi, Applied Physics Letters 100(25) (2012) 251907. [16] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765. [17] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds 509(20) (2011) 6043-6048. [18] A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams, JOM 66(10) (2014) 1984-1992. [19] M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, J.A. Hawk, High-Entropy Alloys in Hexagonal Close-Packed Structure, Metallurgical and Materials Transactions A 47(7) (2016) 3322-3332. [20] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Materialia 59(16) (2011) 6308-6317. [21] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153. [22] D.R. Gaskell, Introduction to the Thermodynamics of Materials, Fifth Edition, Taylor & Francis2008. [23] C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics 31 (2012) 165-172. [24] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy 16(1) (2014) 494-525. [25] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511. [26] N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects AU - Pickering, E. J, International Materials Reviews 61(3) (2016) 183-202. [27] B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, 2014. [28] Michael C. Gao, Jien-Wei Yeh, Peter K. Liaw, Y. Zhang, High-Entropy Alloys- Fundamentals and Applications, Springer, Cham2016. [29] Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Materialia 65 (2014) 85-97. [30] H. oh, D. Ma, G. Leyson, B. Grabowski, E. Park, F. Körmann, Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment, Entropy 18 (2016) 321. [31] H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, N. Chen, Local lattice distortion in high-entropy alloys, Physical Review Materials 1(2) (2017) 023404. [32] H.-W. Chang, P.-K. Huang, J.-W. Yeh, A. Davison, C.-H. Tsau, C.-C. Yang, Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings, Surface and Coatings Technology 202(14) (2008) 3360-3366. [33] M.-H. Tsai, J.-W. Yeh, J.-Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films 516(16) (2008) 5527-5530. [34] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897. [35] M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Journal of Alloys and Compounds 688 (2016) 994-1001. [36] M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Materialia 146 (2018) 211-224. [37] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys—A review, Journal of Materials Research 33(19) (2018) 3092-3128. [38] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, Journal of Materials Science 47(9) (2012) 4062-4074. [39] W. Wu, S. Ni, Y. Liu, M. Song, Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy, Journal of Materials Research 31(24) (2016) 3815-3823. [40] J. Burke, Some factors affecting the rate of grain growth in metals, Aime Trans 180 (1949) 73-91. [41] W.W. Mullins, The statistical self‐similarity hypothesis in grain growth and particle coarsening, Journal of Applied Physics 59(4) (1986) 1341-1349. [42] H.V. Atkinson, Overview no. 65: Theories of normal grain growth in pure single phase systems, Acta Metallurgica 36(3) (1988) 469-491. [43] H. Hu, B.B. Rath, On the time exponent in isothermal grain growth, Metallurgical Transactions 1(11) (1970) 3181-3184. [44] D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, (Revised Reprint), CRC press2009. [45] G.T. Higgins, Grain-Boundary Migration and Grain Growth, Metal Science 8(1) (1974) 143-150. [46] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131-140. [47] Y.-C. Huang, C.-H. Su, S.-K. Wu, C. Lin, A Study on the Hall–Petch Relationship and Grain Growth Kinetics in FCC-Structured High/Medium Entropy Alloys, Entropy 21(3) (2019) 297. [48] W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Materialia 68(7) (2013) 526-529. [49] O.N. Senkov, A.L. Pilchak, S.L. Semiatin, Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy, Metallurgical and Materials Transactions A 49(7) (2018) 2876-2892. [50] S. Chen, K.-K. Tseng, Y. Tong, W. Li, C.-W. Tsai, J.-W. Yeh, P.K. Liaw, Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy, Journal of Alloys and Compounds 795 (2019) 19-26. [51] E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proceedings of the Physical Society. Section B 64(9) (1951) 747-753. [52] N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst. 174 (1953) 25-28. [53] N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Materialia 51(8) (2004) 801-806. [54] E. Anderson, D. King, J. Spreadborough, The relationship between lower yield stress and grain size in Armco iron, Trans TMS-AIME 242 (1968) 115-119. [55] A.A.W. Thompson, Yielding in nickel as a function of grain or cell size, Acta Metallurgica 23(11) (1975) 1337-1342. [56] J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature 391(6667) (1998) 561-563. [57] M.F. Ashby, D.R.H. Jones, Engineering materials 1: an introduction to properties, applications and design, Elsevier2012. [58] D. Wu, J. Zhang, J.C. Huang, H. Bei, T.G. Nieh, Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals, Scripta Materialia 68(2) (2013) 118-121. [59] A.S. Khan, H. Zhang, L. Takacs, Mechanical response and modeling of fully compacted nanocrystalline iron and copper, International Journal of Plasticity 16(12) (2000) 1459-1476. [60] A.F. Jankowski, J. Go, J.P. Hayes, Thermal stability and mechanical behavior of ultra-fine bcc Ta and V coatings, Surface and Coatings Technology 202(4) (2007) 957-961. [61] C.P. Brittain, R.W. Armstrong, G.C. Smith, Hall-petch dependence for ultrafine grain size electrodeposited chromium, Scripta Metallurgica 19(1) (1985) 89-91. [62] V. Provenzano, R. Valiev, D.G. Rickerby, G. Valdre, Mechanical properties of nanostructured chromium, Nanostructured Materials 12(5) (1999) 1103-1108. [63] A.F. Jankowski, J.P. Hayes, C.K. Saw, Dimensional attributes in enhanced hardness of nanocrystalline Ta–V nanolaminates, Philosophical Magazine 87(16) (2007) 2323-2334. [64] K.B. Yoder, A.A. Elmustafa, J.C. Lin, R.A. Hoffman, D.S. Stone, Activation analysis of deformation in evaporated molybdenum thin films, Journal of Physics D: Applied Physics 36(7) (2003) 884-895. [65] A.M. Omar, A.R. Entwisle, The effect of grain size on the deformation of niobium, Materials Science and Engineering 5(5) (1970) 263-270. [66] J. Chen, L. Lu, K. Lu, Hardness and strain rate sensitivity of nanocrystalline Cu, Scripta Materialia 54(11) (2006) 1913-1918. [67] G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, R.W. Armstrong, Hall-petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel, Scripta Metallurgica 20(1) (1986) 93-97. [68] A.S. Khan, B. Farrokh, L. Takacs, Effect of grain refinement on mechanical properties of ball-milled bulk aluminum, Materials Science and Engineering: A 489(1) (2008) 77-84. [69] Y.H. Chew, C.C. Wong, F. Wulff, F.C. Lim, H.M. Goh, Strain rate sensitivity and Hall–Petch behavior of ultrafine-grained gold wires, Thin Solid Films 516(16) (2008) 5376-5380. [70] X.Y. Qin, X.J. Wu, L.D. Zhang, The microhardness of nanocrystalline silver, Nanostructured Materials 5(1) (1995) 101-110. [71] K. Kubota, M. Mabuchi, K. Higashi, Review Processing and mechanical properties of fine-grained magnesium alloys, Journal of Materials Science 34(10) (1999) 2255-2262. [72] M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn, Acta Materialia 52(17) (2004) 5093-5103. [73] X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, Evolution of microstructure and mechanical properties of in situ consolidated bulk ultra-fine-grained and nanocrystalline Zn prepared by ball milling, Materials Science and Engineering: A 344(1) (2003) 175-181. [74] C.-Y. Hyun, J.-H. Lee, H.-K. Kim, Microstructures and mechanical properties of ultrafine grained pure Ti produced by severe plastic deformation, Research on Chemical Intermediates 36(6) (2010) 629-638. [75] R.J. Lederich, S.M.L. Sastry, J.E. O'Neal, B.B. Rath, The effect of grain size on yield stress and work hardening of polycrystalline titanium at 295 K and 575 K, Materials Science and Engineering 33(2) (1978) 183-188. [76] E. Cerreta, C.A. Yablinsky, G.T. Gray, S.C. Vogel, D.W. Brown, The influence of grain size and texture on the mechanical response of high purity hafnium, Materials Science and Engineering: A 456(1) (2007) 243-251. [77] M. Zhang, B. Yang, J. Chu, T.G. Nieh, Hardness enhancement in nanocrystalline tantalum thin films, Scripta Materialia 54(7) (2006) 1227-1230. [78] N.D. Stepanov, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Aging behavior of the HfNbTaTiZr high entropy alloy, Materials Letters 211 (2018) 87-90. [79] S.Y. Chen, Y. Tong, K.K. Tseng, J.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, P.K. Liaw, Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures, Scripta Materialia 158 (2019) 50-56. [80] S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement, S. Guo, Alloy design for intrinsically ductile refractory high-entropy alloys, Journal of Applied Physics 120(16) (2016) 164902. [81] X. Yang, Y. Zhang, P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys, Procedia Engineering 36 (2012) 292-298. [82] H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, Y. Zhang, NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling, Materials Science and Engineering: A 674 (2016) 203-211. [83] N.Y. Yurchenko, E.S. Panina, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, N.D. Stepanov, Microstructure evolution of a novel low-density Ti–Cr–Nb–V refractory high entropy alloy during cold rolling and subsequent annealing, Materials Characterization 158 (2019) 109980. [84] E112-13 Standard Test Methods for Determining Average Grain Size, ASTM International, 2013. [85] R.R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, P.P. Bhattacharjee, Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy, Materials Characterization 136 (2018) 286-292. [86] R.R. Eleti, T. Bhattacharjee, A. Shibata, N. Tsuji, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy, Acta Materialia 171 (2019) 132-145. [87] Y. Wu, J. Si, D. Lin, T. Wang, W.Y. Wang, Y. Wang, Z. Liu, X. Hui, Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys, Materials Science and Engineering: A 724 (2018) 249-259. [88] 賴以晟, 時效對冷加工及再結晶退火CoCrFeMnNi及Al0.2CoCrFeNi高熵合金之研究, 國立臺灣大學材料科學與工程學研究所2019. [89] 蘇哲萱, 三元至五元FCC結構中/高熵合金Hall-Petch關係與晶粒成長之研究 國立臺灣大學材料科學與工程學研究所2018. [90] W. Hume-Rothery, The structure of metals and alloys, Indian Journal of Physics 11 (1969) 74-74. [91] S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics 41 (2013) 96-103. [92] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics 132(2) (2012) 233-238. [93] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of Applied Physics 109(10) (2011). [94] 凃竣翔, 熱處理對Ti48.5Ni49.5Fe2形狀記憶合金變態行為與HfNbTiZr高熵合金機械性質影響之研究, 國立臺灣大學材料科學與工程學研究所2019. [95] P.A. Beck, J.C. Kremer, L. Demer, M. Holzworth, Grain growth in high-purity aluminum and in an aluminum-magnesium alloy, Trans. Am. Inst. Min. Metall. Eng 175 (1948) 372-400. [96] J. Drolet, A. Galibois, The impurity-drag effect on grain growth, Acta Metallurgica 16(12) (1968) 1387-1399. [97] D. Fan, S. Chen, L.-Q. Chen, Computer simulation of grain growth kinetics with solute drag, Journal of materials research 14(3) (1999) 1113-1123. [98] E. Hersent, K. Marthinsen, E. Nes, On the effect of atoms in solid solution on grain growth kinetics, Metallurgical and Materials Transactions A 45(11) (2014) 4882-4890. [99] G. Neumann, C. Tuijn, Chapter 4 - Self-Diffusion and Impurity Diffusion in Group IV Metals, in: G. Neumann, C. Tuijn (Eds.), Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Pergamon2008, pp. 149-213. [100] G. Neumann, C. Tuijn, Chapter 5 - Self-Diffusion and Impurity Diffusion in Group V Metals, in: G. Neumann, C. Tuijn (Eds.), Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Pergamon2008, pp. 215-238. [101] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier2012. [102] S. Maiti, W. Steurer, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Materialia 106 (2016) 87-97. [103] W. Xiong, Y. Du, Y. Liu, B.Y. Huang, H.H. Xu, H.L. Chen, Z. Pan, Thermodynamic assessment of the Mo–Nb–Ta system, Calphad 28(2) (2004) 133-140. [104] H. Bittermann, P. Rogl, Critical assessment and thermodynamic calculation of the ternary system C-Hf-Zr (Carbon-Zirconium-Hafnium), Journal of Phase Equilibria 23(3) (2002) 218. [105] J.L. Murray, H.A. Wriedt, The O−Ti (Oxygen-Titanium) system, Journal of Phase Equilibria 8(2) (1987) 148-165. [106] J.P. Abriata, J. Garcés, R. Versaci, The O−Zr (Oxygen-Zirconium) system, Bulletin of Alloy Phase Diagrams 7(2) (1986) 116-124. [107] F.G. Coury, T. Butler, K. Chaput, A. Saville, J. Copley, J. Foltz, P. Mason, K. Clarke, M. Kaufman, A. Clarke, Phase equilibria, mechanical properties and design of quaternary refractory high entropy alloys, Materials & Design 155 (2018) 244-256. [108] S.-P. Wang, E. Ma, J. Xu, New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution, Intermetallics 107 (2019) 15-23. [109] A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, MATERIALS TRANSACTIONS 46(12) (2005) 2817-2829. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66868 | - |
| dc.description.abstract | 本研究首先從BCC結構的八種含高熔點元素之中/高熵合金(RHEAs) HfMoNbTaTiZr、HfNbTaTiVZr、HfNbTaTiZr、HfNbTaTi、HfNbTaZr、HfNbTiZr、HfTaTiZr及NbTaTiZr透過常溫的軋延測試,發現除已報導具有優良常溫軋延性質的HfNbTaTiZr及HfNbTiZr RHEAs外,HfNbTaTi及HfNbTaZr RHEAs也具有優良的常溫軋延性質。接著探討HfNbTaTiZr、HfNbTaTi、HfNbTaZr及HfNbTiZr RHEAs,經常溫軋延80%與真空封管後,於900℃至1200℃再結晶退火不同時間後的顯微結構與機械性質。由XRD、金相圖、SEM的結果得知,HfNbTaTiZr、HfNbTaTi及HfNbTiZr RHEAs在常溫軋延與再結晶退火後皆為BCC單相結構。由晶粒成長理論分析HfNbTaTi及HfNbTiZr RHEAs再結晶退火後的行為,發現兩者於900℃至1200℃的晶粒成長指數n值分別為0.2669與0.3674,晶粒成長活化能Q值分別為385.9 kJ/mol與190.2 kJ/mol。實驗結果顯示Q值的大小與合金所含的元素、再結晶前的冷加工量、再結晶溫度的範圍與退火時間的長短等因素有關。HfNbTaZr RHEA經常溫軋延80%與真空封管後,於900℃至1000℃退火後會於BCC基地中析出富Ta-Nb之BCC結構析出物與少量富Hf-Zr之HCP結構析出物,於1100℃至1200℃退火則會於BCC基地中析出少量富Hf-Zr之HCP結構析出物。上述四種RHEAs的微硬度試驗結果發現,於80%常溫軋延後,隨著再結晶退火溫度的增加,其硬度值的軟化有逐漸降低的趨勢。此外,本研究也發現HfNbTiZr及HfNbTaTi RHEAs再結晶退火後分別因為晶粒尺寸過大及晶粒尺寸差異不明顯等因素,導致兩者無法由其硬度值來建立Hall–Petch關係式。 | zh_TW |
| dc.description.abstract | Eight BCC-structured refractory high entropy alloys (RHEAs) were tested their rollability at room temperature and found that HfNbTaTiZr, HfNbTaTi, HfNbTaZr and HfNbTiZr RHEAs can be cold-rolled to 80% thickness reduction. The microstructure and XRD tests of these four rollable RHEAs after 80% cold working and annealing were investigated and showed HfNbTaTiZr, HfNbTaTi and HfNbTiZr RHEAs were single-phase BCC solid solution in as-rolled and annealed conditions. The grain sizes of the specimens recrystallized at 900℃ to 1200℃ for various times were measured, and based on the theorem of grain growth, the obtained n value and the activation energy Q were 0.3674 and 190.2 kJ/mol for HfNbTiZr RHEA and 0.2669 and 385.9 kJ/mol for HfNbTaTi RHEA, respectively. Furthermore, the experimental results indicated that the Q values were affected by the alloying elements, the cold working degree, the recrystallization temperature range and the annealing time. The phase decomposition tested by XRD and SEM tests of the HfNbTaZr RHEA annealed at 900℃ to 1200℃ was found to form BCC Ta-Nb-rich and HCP Hf-Zr-rich precipitates(ppts) in the BCC matrix, but only HCP Hf-Zr-rich ppts were formed in 1100℃/1200℃ annealed specimens. The Vickers hardness tests revealed that the hardness softening rate of the cold-rolled specimens recrystallized at 900℃ to 1200℃ decreased as the annealing temperature increased. The hardness evolution of the recrystallized HfNbTiZr and HfNbTaTi RHEAs was also studied and found that the grain sizes were too large to investigate their Hall–Petch relationship. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:09:55Z (GMT). No. of bitstreams: 1 ntu-109-R06527078-1.pdf: 4011281 bytes, checksum: 905b999b0c19e0fa022cdf7158ddecc0 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 iii 摘要 v Abstract vii 內容目錄 ix 圖目錄 xi 表目錄 xiii 第一章 前言 1 第二章 文獻回顧 3 2-1 高熵合金(HEA)簡介 3 2-1-1高熵效應(High entropy effect) 5 2-1-2晶格扭曲效應(Lattice distortion effect) 6 2-1-3緩慢擴散效應(Sluggish effect) 6 2-1-4雞尾酒效應(Cocktail effect) 7 2-2 高熔點高熵合金(RHEA) 8 2-3 晶粒成長效應 9 2-4 Hall–Petch關係式 11 2-5 本論文研究目的與合金選擇 12 第三章 實驗方法 23 3-1 高熔點高熵合金(RHEAs)的製備 23 3-2 常溫滾壓測試 24 3-3 熱處理 25 3-4 X光繞射(XRD)分析 26 3-5 微結構觀察 27 3-5-1電子微探儀(EPMA)成分量測 27 3-5-2 光學顯微鏡(OM)觀察與晶粒大小量測 27 3-5-3 掃描式電子顯微鏡(SEM)觀察 29 3-6 機械性質量測 29 3-6-1微硬度(Vickers Microhardness)量測 29 第四章 實驗結果與討論 39 4-1 常溫滾壓測試與成分分析 39 4-2 X光繞射(XRD)分析 40 4-3 晶粒成長行為 43 4-3-1 HfNbTiZr RHEA的晶粒成長 43 4-3-2 HfNbTaTi RHEA的晶粒成長 45 4-3-3綜合討論 46 4-4 HfNbTaZr RHEA退火後的微結構探討 50 4-5 微硬度值與Hall–Petch關係式的探討 52 4-5-1 HfNbTaTiZr、HfNbTaTi、HfNbTaZr及HfNbTiZr RHEAs經一小時退火後的微硬度值 53 4-5-2 HfNbTiZr RHEA的微硬度值 54 4-5-3 HfNbTaTi RHEA的微硬度值 55 第五章 結論 95 參考文獻 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | BCC結構高熵合金 | zh_TW |
| dc.subject | 微硬度值 | zh_TW |
| dc.subject | 析出相 | zh_TW |
| dc.subject | 晶粒成長 | zh_TW |
| dc.subject | 再結晶退火 | zh_TW |
| dc.subject | 常溫軋延 | zh_TW |
| dc.subject | BCC-structured high entropy alloys | en |
| dc.subject | Precipitates | en |
| dc.subject | Hardness | en |
| dc.subject | Grain growth | en |
| dc.subject | Recrystallization annealing | en |
| dc.subject | Cold rolling | en |
| dc.title | BCC結構中/高熵合金晶粒成長之研究 | zh_TW |
| dc.title | A Study on Grain Growth of BCC-structured Medium/High Entropy Alloys | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林新智(Hsin-Chih Lin),張世航(Shih-Hang Chang),周棟勝(Tung-Sheng Chou) | |
| dc.subject.keyword | BCC結構高熵合金,常溫軋延,再結晶退火,晶粒成長,析出相,微硬度值, | zh_TW |
| dc.subject.keyword | BCC-structured high entropy alloys,Cold rolling,Recrystallization annealing,Grain growth,Precipitates,Hardness, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU202000159 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-01-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-109-1.pdf Restricted Access | 3.92 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
